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ABSTRACT

Geometric algebra is a mathematical structure that is inherent in any metric vector space, and defined by the
requirement that the metric tensor is given by the scalar part of the product of vectors. It provides a natural
framework in which to represent the classical groups as subgroups of rotation groups, and similarly their Lie
algebras. In this article we show how the geometric algebra of a six-dimensional real Euclidean vector space
naturally allows one to construct the special unitary group on a two-qubit (quantum bit) Hilbert space, in a
fashion similar to that used in the well-established Bloch sphere model for a single qubit. This is then used to
illustrate the Cartan decompositions and subalgebras of the four-dimensional unitary group, which have recently
been used by J. Zhang, J. Vala, S. Sastry and K. B. Whaley [Phys. Rev. A 67, 042313, 2003] to study the
entangling capabilities of two-qubit unitaries.
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1. INTRODUCTION

The so-called Bloch sphere model of a two-level quantum system is widely used in quantum information pro-
cessing, and as a visualization aid in quantum physics more generally. Although its origins can be traced back
to Riemann’s stereographic projection of the unit sphere (minus one point) onto the complex plane, it has since
been rediscovered several times in variety of physical contexts, including the Stokes vector in optics,1 the Bloch
vector in nuclear magnetic resonance,2 and the Feynman-Vernon-Hellwarth model of the maser.3 This geomet-
ric interpretation of the state of a two-level quantum system is based on the fact that the special unitary group
SU(2) is the two-fold covering group of SO(3), the proper rotations of a three-dimensional vector space, and the
associated Lie algebra isomorphism so(3) ≈ su(2). This isomorphism is “accidental” in the sense that it does
not extend to an isomorphism of so(n) with su

(√

1 + n(n− 1)/2
)

for some infinite sequence of integers n > 3.
It does, however, extend to the case n = 6, i.e. so(6) ≈ su(4), which corresponds to a pair of coupled two-level
quantum systems or, from a quantum information processing perspective, a pair of qubits.

In this article we construct a geometric model based on a six-dimensional Euclidean vector space for the
states and transformations of a pair of qubits, and use this model to interpret a parametrization of SU(4) that
was recently derived from the basic theory of Lie algebras.4, 5 It should first be noted that unlike the SU(2)
vs. SO(3) case, a six-dimensional vector space is not nearly large enough to fully parametrize the 15-dimensional
group SU(4). This would ordinarily be handled by introducing 6 × 6 rotation matrices parametrized by the
six-dimensional analog of spherical-polar coordinates, but this does not illuminate the underlying geometry in
any simple way. Instead, therefore, we will be using a generalization of vector algebra to metric vector spaces
of all dimensions and signatures, which is best known today as geometric algebra.6, 7 Although this is certainly
much less widely known than matrix algebra, the intimate links between the structure of geometric algebra and
the geometry of the underlying vector space makes it the ideal tool for our purposes. Figure 1 attempts to
put geometric algebra into historical perspective vis-á-vis the better known and related (though very different)
formalisms of algebraic geometry and group representations.
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Figure 1. The modern theory of geometry was initiated by Felix Klein’s famous Erlanger programme of 1872, which
promoted the view that “geometry” should be regarded as the study of the invariants of group actions. This led to three
main lines of mathematical research. The first was known as invariant theory, and used polynomials in the coordinates
to express geometric properties, and polynomials in these invariants (syzygies) to express geometric relations among the
properties. It proved too difficult to perform the necessary computations in these terms (at least before computers), and
was basically subsumed into the more general theory of algebraic curves and surfaces now known as algebraic geometry.
The other was group representation theory, which was basically invented by Frobenius and was subsequently used to
develop the abstract theory of Lie algebras developed by Lie and Engel. Geometric algebra was actually initiated by
Grassmann and, in the form of quaternions, by Hamilton even before Klein launched his programme, and subsequently
developed by many well-known scientists and mathematicians including Clifford, Peano and Gibbs. Due to a variety of
historical accidents, it never became as well established as the other main formalisms, although its influence many be seen
in several subsequent developments, e.g. vector algebra, spinor theory and differential forms; in pure mathematics, it has
more recently been used in the study Riemannian manifolds under the name of “Clifford algebra”.8 Over the last forty
years or so, its diverse applications across physics and engineering have gradually become increasingly broadly recognized,
starting with the work of Baylis, Hestenes and Sobczyk.9–12 A fascinating account of the history of these geometrical
ideas may be found in a modern book by Isaac M. Yaglom.13

This remaining sections of this article are organized as follows. The first section below provides a brief
introduction to geometric algebra, so as to make this article reasonably self-contained. The next section shows
how the geometric algebra of a three-dimensional Euclidean vector space applies to the Bloch sphere model.
This is extended to the six-dimensional model in the following section, using the fact that the even subalgebra
of its geometric algebra is isomorphic to the usual algebra of complex 4 × 4 matrices. Finally, we consider
the parametrization of unitary transformations in the model that follows from the isomorphism so(6) ≈ su(4),
along with possible extensions to more general completely positive linear maps. In closing, we briefly discuss
the connections of this work to other applications of geometric algebra to quantum mechanics, most notably the
multiparticle space-time algebra.14–16

2. BASIC CONCEPTS OF GEOMETRIC ALGEBRA

Like most good mathematical ideas, geometric algebras may be defined in a number of different ways. The
following definition, taken from Ref. 17, has the advantage that it refers directly to operations and properties
that we shall subsequently utilize.

Definition 2.1. An associative algebra over R is the geometric algebra G(p, q) of a metric vector space V with
nondegenerate quadratic form Q : V → R of signature (p, q) if it contains both R and V as distinct subspaces
such that:

• the square of any vector v ∈ V is v2 = Q(v);



• V generates G(p, q) as an algebra over R;

• G(p, q) is not generated by any proper subspace of V.

The algebra determined by these assumptions is unique up to isomorphism and, being semi-simple, also isomor-
phic to a direct sum of matrix algebras over a real division ring (i.e. the reals, the complex numbers, or the
quaternions). Note further that in general the algebra G(p, q) contains the vector space V as a proper linear
subspace; the geometric interpretation of the entities in G(p, q) that are not simply vectors in V will be explained
shortly.

As an immediate consequence of the first assumed property, the symmetric part of the geometric product of
two vectors is the value of the bilinear form defined by Q, since

1
2

(
ab + ba

)
= 1

2

(
a2 + b2 − (a − b)2

)
= 1

2

(
Q(a) +Q(b) −Q(a − b)

)
. (1)

We shall henceforth refer to this as the inner product of the vectors, which in keeping with modern conventions
shall be denoted by a · b. The remaining, antisymmetric part of the geometric product, by way of contrast, is
referred to as the outer product, and written (following a notation that dates back all the way to Grassmann) as

a ∧ b ≡ 1
2

(
ab − ba

)
. (2)

This outer product may be extended to an associative and totally antisymmetric product of any number of
vectors via the recursive definition

a ∧ Br ≡ 1
2

(
aBr + (−1)r

Bra
) (

r = 1, 2, . . .
)
, (3)

with B1 ≡ b ∈ V . These outer products span the entire real linear space on which G(p, q) is built, and will be
referred to in the following as r-blades.

The geometric interpretation of an r-blade is both straightforward and natural. It is the locus of the linear
equation defined by the outer product of the blade with yet another vector, namely

L(Br) ≡
{
a ∈ V | a ∧ Br = 0

}
, (4)

and hence a subspace of the underlying space of simple vectors V . Indeed, the definition of the outer product
immediately implies that a ∧ b = 0 if and only if a = αb for some scalar α, and hence more generally that

a ∧ Br = 0 ⇔ a = α1b1 + · · · + αrbr

(
α1, . . . , αr ∈ R, Br ≡ b1 ∧ · · · ∧ br

)
, (5)

i.e. a is linearly dependent on the factors b1, . . . , br ∈ V of Br. This subspace interpretation justifies the
convention that the outer product of any r > p+ q vectors is identically zero.

A given orthonormal basis e1, . . . , en of the underlying vector space V (n = p+ q) induces a basis for G(p, q)
as a real linear space, which is given by all combinations of outer products of basis vectors in lexicographic order,
i.e.

1
︸︷︷︸

1

, e1, . . . , en
︸ ︷︷ ︸

n

, e1 ∧ e2, . . . , en−1 ∧ en
︸ ︷︷ ︸

(n

2)

, e1 ∧ e2 ∧ e3, . . . , en−2 ∧ en−1 ∧ en
︸ ︷︷ ︸

(n

3)

, . . . , e1 ∧ · · · ∧ en
︸ ︷︷ ︸

1

. (6)

The numbers under each subsequence of r-blades is the dimension
(

n
r

)
of the space of r-vectors that they span,

and thus the dimension of the entire algebra is

∑n

r=0

(
n

r

)

= 2n . (7)

The algebra of outer products is in fact the well-known exterior algebra
∧V , which is widely used in the algebraic

theory of projective geometry.18 In keeping with this field, we will sometimes denote the subspace of r-vectors



Table 1.

r 1 2 3 4 5 6 7 8

r(r − 1)/2 0 1 3 6 10 15 21 28

(−1)
r − + − + − + − +

(−1)r(r−1)/2 + − − + + − − +

by
∧

r V , and in order to avoid confusion with the dimension of V , the number of vectors r in an r-blade will be
called its grade.

We now return to the inner product, and similarly extend it to all r-blades via the complementary definition

a · Br ≡ 1
2

(
aBr − (−1)

r
Bra

) (
r = 1, 2, . . .

)
. (8)

As an immediate consequence, we can express the geometric product of a vector and an r-blade as the sum of
its inner and outer products,

aBr = a · Br + a ∧ Br . (9)

Unlike the outer product, however, the inner product is not associative, and indeed it is readily verified that

a ·
(
a′ · Br

)
=
(
a ∧ a′) · Br = −

(
a′ ∧ a

)
· Br = − a′ ·

(
a · Br

)
6=
(
a · a′) · Br . (10)

Indeed we will w.l.o.g. set α ·Br = 0 for any scalar α, since these products are not of much use otherwise. Note
in particular that a · (a · Br) = (a ∧ a) · Br = 0 · Br = 0.

In addition to the inner and outer products, there are two unary involutions (mappings which applied twice
give the identity) in geometric algebras. The first of these is variously known as inversion or the parity operation,
and denoted with an overbar, e.g. Br . This is defined on vectors as multiplication by −1, and extended by
multilinearity to general r-blades, i.e.

b1 ∧ · · · ∧ br ≡ (−1)r
b1 ∧ · · · ∧ br . (11)

It is easily verified that this operation respects the inner, outer and geometric products, i.e. it is an algebra
automorphism, so that the space of all inversion symmetric multivectors forms a subalgebra under the geometric
product which is known as the even subalgebra G+(p, q). The other involution is known as reversion. This
simply reverses the order of the vectors in every r-blade, and is denoted by a tilde, e.g. B̃r or B∼

r . Because the
outer product is antisymmetric, the net effect is to change the sign of an r-vector whenever the parity of the
permutation, as a product of transpositions, is odd, i.e.

(
b1 ∧ · · · ∧ br

)∼ ≡ (−1)(
r

2) b1 ∧ · · · ∧ br . (12)

Reversion is not an automorphism but rather an anti-automorphism, meaning (AB)∼ = B̃Ã.

Together, these two involutions allow one to say a good deal about the grade of an expression in the algebra.
For example, a quick look at their definitions shows that the inner and outer products of a vector with an r-vector
change sign under inversion when r is even but not when r is odd so that, in particular, these products can have
no r-vector part. On the other hand, the inner product a ·Br changes sign under reversion when r and r(r−1)/2
are both odd or both even but not otherwise, while for the outer product a ∧ Br it’s the other way around.
The dependence of reversion and inversion symmetry on r is summarized in Table 1, which shows that these
symmetries allow us to determine the value of r mod 4. It further shows that the change in these symmetries
on taking the inner and outer products of a vector with an r-vector is most simply explained by the fact that
the former has rank r − 1 and the latter r + 1 (the latter was of course built into the definition of an r-blade).



Thus we say that the inner product is grade lowering and the outer grade raising. In fact the inner and outer
products of an r-blade with an s-blade are most simply defined as

Ar · Bs ≡ 〈ArBs 〉|r−s| , Ar ∧ Bs ≡ 〈ArBs 〉r+s , (13)

where 〈 〉r denotes the orthogonal projection of the enclosed expression onto the subspace of r-vectors.

In much of what follows, we shall be using geometric algebra as a means of representing Lie algebras and
groups. The utility of geometric algebra in this regard stems from the fact that the commutator product of
bivectors (aka 2-vectors), which we shall write as

A2 × B2 ≡ A2B2 − B2A2 , (14)

is readily shown by its symmetry with respect to inversion and reversion to yield another bivector. In fact the
bivector algebra under the commutator product is isomorphic to the Lie algebra of the special orthogonal group
(isometries) of the underlying metric vector space, SO(p, q). The exponential map, likewise defined using the
geometric product, yields a rotor R = exp(B) ∈ G+(p, q) which rotates vectors by conjugation, i.e. a′ = Ra R̃
(in the remainder of this paper we shall usually drop the grade subscript from our blades, indicating grade instead
by B = 〈B 〉r . The Lie algebras of the other three main series in their classification, i.e. the symplectic, unitary
and complex orthogonal, can all be obtained as subalgebras of the orthogonal Lie algebras of higher dimensions.
In fact, the general linear group GL(n) and its Lie algebra may be obtained by restricting the action of the
isometries in G(n, n) to the n-dimensional subspace of null vectors, and the classification theory for semisimple
Lie algebras worked out within this framework.19

3. QUBIT MECHANICS AND THE GEOMETRIC ALGEBRA OF 3-D SPACE

This section is devoted to a fairly detailed exposition of the geometric algebra of a three-dimensional vector
space, which will be denoted as G(3) ≡ G(3, 0). This provides an excellent nontrivial example of most of the
foregoing generalities on geometric algebras. In addition, via the Bloch sphere model of a qubit’s state as a
three-dimensional unit vector, it will enable us to make a direct connection with quantum mechanics.

Let e1, e2, e3 ∈ V ≈ R3 be an orthonormal basis for a three-dimensional Euclidean space, so that

e2
1 = e2

2 = e2
3 = 1 and ei ej = ei · ej + ei ∧ ej = ei ∧ ej = −ej ∧ ei = −(ei ej)

∼ (15)

for all 1 ≤ i < j ≤ 3. Using these relations, it is easily shown that the elements of the induced basis for the
space of bivectors, denoted by

E1 ≡ e2 e3 , E2 ≡ e3 e1 , E3 ≡ e1 e2 , (16)

likewise anticommute but square to −1, e.g.

E2
1 = − (e2 e3)

∼(e2 e3) = − e3(e
2
2)e3 = − e2

3 = − 1 (17)

and
E1E2 = (e2e3)(e3e1) = − e1e2 = − E2E1 . (18)

Similarly, it can be shown that E1E2E3 = 1.

These relations are, up to sign, exactly those which define the quaternion units i, j, k, and the even subalgebra
G+(3) generated by the bivector units is isomorphic to the full quaternion algebra. Indeed G(3) constitutes a
seamless merger of vector algebra with the quaternions. The rotor (quaternion) that rotates vectors by an angle
ϑ in the plane of E1 is

R(ϑ) ≡ exp
(
(ϑ/2)E1

)
=
∑∞

k=0

(ϑ/2)k Ek
1

k!
= · · ·

∑∞

k=0

(−1)k(ϑ/2)2k

(2k)!
+ E1

∑∞

k=0

(−1)k(ϑ/2)2k+1

(2k + 1)!
= cos(ϑ/2) + E1 sin(ϑ/2) , (19)



as is readily verified, e.g.

R(ϑ)e3 R̃(ϑ) =
(
cos(ϑ/2) + E1 sin(ϑ/2)

)
e3

(
cos(ϑ/2) − E1 sin(ϑ/2)

)
= · · ·

(
cos(ϑ/2) + E1 sin(ϑ/2)

)2
e3 =

(
cos(ϑ) + E1 sin(ϑ)

)
e3 = cos(ϑ)e3 + sin(ϑ)e2 , (20)

where we have used the relations E1 e3 = e2 = −e3 E1 (note that this is a left-hand rotation). The appearance
of the half-angle ϑ/2 in this formula means that rotors constitute a spinor representation of SO(3), which is a
two-fold cover of SO(3) since ±R(ϑ) both yield the same rotation.

The ordered product of all three basis vectors I ≡ e1e2e3 is variously known as the unit trivector or pseu-
doscalar. This latter name stems from the fact that it (and all scalar multiples thereof) commute with all the
basis vectors and hence with the entire algebra G(3) they generate, since

I e1 = e1e2e3e1 = − e1e2e1e3 = e2
1e2e3 = e1 I , (21)

and similarly for e2, e3 . Furthermore, I is yet-another square-root of −1, since

I2 = − IĨ = − E3 e2
3 Ẽ3 = − E3 Ẽ3 = E2

3 = −1 . (22)

In other words, I is algebraically identical to an abstract imaginary unit “i”. The difference is that (like the
basis bivectors above) the unit pseudoscalar admits a geometric interpretation as the oriented volume element
of space. Its algebraic combination with real vectors, e.g. I e1 as above, may also be interpreted as the oriented
areal element in the plane orthogonal to e1. This allows us to write the rotor for a right-handed rotation by an
angle ϑ about an axis â (â2 = 1) a little more intuitively as

Râ(ϑ) = exp
(
−I (ϑ/2) â

)
= cos(ϑ/2) − I â sin(ϑ/2) . (23)

Finally, we have the relation
I Eℓ = − eℓ

(
1 ≤ ℓ ≤ 3

)
, (24)

which implies that the cross product of vectors may be expressed in terms of their outer product as

a × b = Ĩ (a ∧ b) . (25)

The state of a qubit is, of course, represented by a unit vector in a two-dimensional complex Hilbert space,
which at first sight seems very far removed from anything in three-dimensional Euclidean geometry. For someone
who is already familiar with both, however, the connection may be stated in a single line: the Pauli matrix algebra
is a representation of the geometric algebra G(3). An isomorphism between them is obtained simply by mapping
the unit vectors to the corresponding Pauli matrices, i.e.

e1 ↔ σ1 =
[

0 1

1 0

]

, e2 ↔ σ2 =
[

0 −i

i 0

]

, e3 ↔ σ3 =
[

1 0

0 −1

]

, (26)

as may be verified by showing that these matrices satisfy the same algebraic relations as the basis vectors. The
relations between the multivectors in G(3) and various types of 2× 2 complex matrices are summarized in Table
2. In particular, the even subalgebra G+(3) (or quaternions if you prefer) is represented by all real multiples of
SU(2) matrices, i.e. SU(2) ≈ Spin(3), the multiplicative group of rotors in G+(3).

Table 2.

the real numbers real multiples of the 2 × 2 identity

three-dimensional space of vectors traceless 2 × 2 Hermitian matrices

three-dimensional space of bivectors traceless 2 × 2 anti-Hermitian matrices

the pseudoscalars imaginary multiples of the 2 × 2 identity



As simple as this correspondence is, we have yet to say how one represents the state of a qubit in G(3), and
it is not obvious since they are usually represented by 2 × 1 vectors rather than 2 × 2 matrices. The trick is to
form a matrix with zeros in its second column, which has the same number of degrees of freedom in it as a 2× 1
vector, and transforms correctly under left-multiplication by SU(2), namely

|ψ 〉 =

[

ψ1

ψ2

]

↔
[

ψ1 0

ψ2 0

]

=

[

ψ1 −ψ∗
2

ψ2 ψ∗
1

][

1 0

0 0

]

↔ Ψ 1
2 (1 + e3) = ΨP3 , (27)

where Ψ ∈ G+(3) and P3 ≡ 1
2 (1 + e3) is a projection operator, i.e. P 2

3 = P3 . This is described mathematically
by saying that spinors form a left-ideal in G(3).

Having made this identification, we are now ready to complete the job of showing how qubit mechanics can
be embedded within G(3). Expectation values are computed pretty much as usual, i.e.

1
2 〈ψ |A |ψ 〉 ≡ 1

2 〈ψ | a1σ1 + a2σ2 + a3σ3 |ψ 〉 = 〈P3Ψ̃aΨP3 〉0 = 〈 Ψ̃a ΨP3 〉0 , (28)

where the vector a ≡ a1e1 + a2e2 + a3e3 . On the right-hand side of this equation, we have used P 2
3 = P3

together with the fact that the scalar part “ 〈 〉0” equals one-half the real part of the trace in the Pauli matrix
representation. This formula extends readily to ensembles of quantum systems in a mixed state if one defines
the density operator in G(3) as

ρ ≡ 2 〈ΨP3Ψ̃ 〉 =⇒ 〈A 〉 = 〈 ρa 〉0 , (29)

where the unsubscripted angular brackets now refer to the ensemble average. This latter formula admits a nice
geometric interpretation if we recall the definition of P3 and that Ψ ∈ G+(3) rotates vectors by conjugation, so
that

ρ = 1 + 〈Ψe3Ψ̃ 〉 ≡ 1 + b =⇒ 〈A 〉 = 〈a 〉0 + 〈 ba 〉0 = 〈ab 〉0 = a · b . (30)

The vector b of course corresponds to the usual Bloch vector, and represents the average state of the qubit over
the ensemble.

This last equation implies that the rotor Ψ can be interpreted as an instruction to rotate the reference vector
e3 to the Bloch vector of the pure state in question. This has rather interesting implications for the meaning of
certain features of quantum mechanics.7, 11 It shows that the indeterminate phase of the spinor is nothing but the
angle of rotation about e3 , explaining why it has no effect on the state. It also shows why spinors transform with
the half-angle of the corresponding Euclidean rotation quite simply. The generalization of these interpretations
to multi-qubit systems has received a considerable amount of attention over the last few years,14–16 and we shall
now revisit some of this work using a new geometric model for the states and operators of a two-qubit system.

4. QUBIT MECHANICS AND THE GEOMETRIC ALGEBRA OF 6-D SPACE

As mentioned in the Introduction, the Lie algebra isomorphisms spin(6) ≈ so(6) ≈ su(4) imply that it should
be possible to represent the states and operators of a two-qubit system within the geometric algebra of a six-
dimensional Euclidean vector space G(6). We will now show by construction how this can actually be done, along
with the geometric interpretations of the state of a pair of qubits which this isomorphism implies.

4.1. The Lie and Matrix Algebra Isomorphisms

The 15-dimensional Lie algebra su(4) is usually represented by 4 × 4 anti-Hermitian matrices, whereas we shall
represent the elements of the Lie algebra spin(6) by the 15-dimensional subspace of bivectors in G(6). If we let
σ1

k
≡ σk ⊗ σ0, σ2

k
≡ σ0 ⊗ σk be the tensor products of Pauli matrices with the 2 × 2 identity σ0 (k = 1, 2, 3),

then it is readily verified that i times these six matrices and their nine matrix products σ1
k
σ2

ℓ
= σk ⊗σℓ span the

15-dimensional space of anti-Hermitian matrices and so generate all of su(4). We shall also let e1, e2, e3,f1,f2,f3

be an orthonormal basis of V ≈ R
6, and abbreviate the bivectors of ∧2V by:

G10 ≡ e2e3 (and all cyclic permutations over the indices 1, 2, 3)

G01 ≡ f2f3 (and all cyclic permutations over the indices 1, 2, 3) (31)

Gij ≡ eifj (−1)δij (for all 1 ≤ i, j ≤ 3, where δ is the Kronecker delta).



Then it is easily verified that under the correspondence indicated below the matrix and basis bivectors satisfy
the same commutation relations, so that the linear mapping defined by this correspondence among the basis
elements extends to real linear mapping between these two spaces that constitutes an instance of the purported
isomorphism:

i σ1
1 ↔ G10 i σ1

2 ↔ G20 i σ1
3 ↔ G30

i σ2
1 ↔ G01 i σ2

2 ↔ G02 i σ2
3 ↔ G03

i σ1
1σ2

1 ↔ G11 i σ1
2σ2

1 ↔ G21 i σ1
3σ2

1 ↔ G31 (32)

i σ1
1σ2

2 ↔ G12 i σ1
2σ2

2 ↔ G22 i σ1
3σ2

2 ↔ G32

i σ1
1σ2

3 ↔ G13 i σ1
2σ2

3 ↔ G23 i σ1
3σ2

3 ↔ G33

Specifically, the bivector basis elements satisfy the following commutation relations:

Gik × Gik = 0 (for all 0 ≤ i, k ≤ 3)

Gik × Gjℓ = 0 (for all 1 ≤ i, j, k, ℓ ≤ 3 with i 6= j and k 6= ℓ)

G1k × G2k = − G30 (for all 0 ≤ k ≤ 3 and cyclic permutations over the first index) (33)

Gi1 × Gi2 = − G03 (for all 0 ≤ i ≤ 3 and cyclic permutations over the second index)

G10 × G2ℓ = − G3ℓ (for all 1 ≤ ℓ ≤ 3 and cyclic permutations over the first index)

G01 × Gj2 = − Gj3 (for all 1 ≤ j ≤ 3 and cyclic permutations over the second index)

A little further inspection quickly shows that not only do these matrices and bivectors correspond under the
commutator product, but within any three-dimensional subspace the products of these matrices coincides with
the geometric product of the bivectors. Since the reversion of bivectors corresponds to Hermitian transposition in
the matrix algebra, reversion symmetric entities in the even subalgebra G

+(6) serve as the analogs of Hermitian
matrices in our six-dimensional model. These entities consist of the scalars and the 4-vectors, which together span
a real 16-dimensional subspace as they should. The final dimension in the even subalgebra is the pseudoscalar
I ≡ e1e2e3f1f2f3. This squares to −1, commutes with everything in G

+(6) and maps 2-vectors to 4-vectors by
multiplication (and vice versa). In short, it is clearly a geometric analog of the imaginary unit times the identity
in the 4 × 4 matrix algebra.

The next task is to find an analog of the state vectors of pure states, which we shall again regard as a
left-ideal, i.e. as matrices with all their entries equal to zero outside their first column, in analogy with the state
vectors of single qubits in G(3) (see above). Since the tensor products of single qubit pure states span the full
two-qubit Hilbert space in the matrix model, it is reasonable to use the analogous construction here, i.e.

|φ 〉 ⊗ |ϕ 〉 ↔ Φ1P 1
3 Θ2P 2

3 ≡ Φ1 1
2

(
1 − Ie1e2

)
Θ2 1

2

(
1 − If1f2

)
= Φ1Θ2 1

4

(
1 − IG30 − IG03 − IG33

)
, (34)

where we have written the 4-vector basis elements σ1
3 ↔ e3f1f2f3 and σ2

3 ↔ e1e2e3f3 as −I times the

complementary bivectors. The multivectors Φ1 & Θ2 ∈ G
+(6) are actually the sums of scalars and bivectors in

the even subalgebras G
+(3) generated by e1, e2, e3 & f1,f2,f3, respectively. Under the geometric product, these

two four-dimensional even subalgebras generate the full 16-dimensional even subalgebra, and the normalization
condition ΨΨ̃ = 1 on the state vectors ΨP 1

3P
2
3 ∈ G

+(6) ensures that Ψ corresponds to a unitary in the matrix
algebra. In terms of these matrices, each state vector is identified with the set of all unitary matrices with the
same first column.

Geometric analogs of density matrices, henceforth called density operators to distinguish them, may be
constructed in exactly the same fashion as in the matrix algebra as well. The dyadic (sometimes misnamed the
outer!) product of a state vector with its Hermitian conjugate clearly corresponds to

|ψ 〉〈ψ | ↔ ΨP 1
3P

2
3 Ψ̃ . (35)

Just as in the Bloch sphere model of a single qubit, this may be regarded as a unitary transformation of the
density operator of the reference state P 1

3 P
2
3 ↔ | 00 〉〈 00 | to that corresponding to |ψ 〉〈ψ |. General density



operators ρ ∈ G
+(6) may then be obtained by taking convex combinations of those of pure states in the usual

way. A geometric characterization of the positive semidefiniteness of density matrices does not, alas, fall out
immediately. The best one can say is that powers of the density operator have scalar parts (four times the trace
in the matrix representation) that satisfy certain inequalities. Letting ρ̂ ≡ ρ− 1/4 be the “traceless part” of ρ,
the first of these inequalities are

3
16 ≥ 〈 ρ̂2 〉0 , 3

32 ≥ 〈 ρ̂3 〉0 , 15
128 ≥ 〈 ρ̂4 〉0 . (36)

Somewhat more insight into the geometry of pure states can be obtained from the well-known Schmidt
decomposition. This is usually written as a convex combination of tensor products of one-qubit states, but with
a little work one can parametrize all the quantities appearing therein in terms of angles plus an overall scale
factor, i.e.

|ψ 〉 = ̺ e−iφ

(

cos(ς/2) e−iτ/2

[

cos(ϑ1/2)e−iϕ1/2

sin(ϑ1/2)e iϕ1/2

]

⊗
[

cos(ϑ2/2)e−iϕ2/2

sin(ϑ2/2)e iϕ2/2

]

+ · · ·

sin(ς/2) e iτ/2

[

sin(ϑ1/2)e−iϕ1/2

− cos(ϑ1/2)e iϕ1/2

]

⊗
[

sin(ϑ2/2)e−iϕ2/2

− cos(ϑ2/2)e iϕ2/2

])

. (37)

The analog of this decomposition in G
+(6) is

Ψ = ̺ e−Iφ e−ϕ1/2 G30−ϕ2/2 G03 e−ϑ1/2 G20−ϑ2/2 G02 e−τ/2 (G30+G03) e−ς/2 G22 P 1
3P

2
3 . (38)

Although this may at first glance appear formidable, the interpretation of each factor in it is actually fairly
straightforward. In left-to-right order, first two parameters are the overall magnitude ̺ (usually set to unity)
and overall phase angle φ. The next factor contains the azimuthal angles ϕ1, ϕ2 of the Bloch vectors of the two
qubits, as rotations in the planes of the bivectors G30,G03 respectively. The next two contain the altitudinal
angles ϑ1, ϑ2 of the Bloch vectors as rotations in the G20,G02 planes. Thereafter we have the parameter τ which
equals the sum of the two angles of rotation about the reference directions of the two Bloch vectors, because the
difference G30 − G03 is projected to zero by the idempotents P 1

3P
2
3 . The corresponding exponential rotates the

two components obtained on expansion of the last factor in opposite directions, namely

exp
(
− ς/2 G22

)
= cos(ς/2) − G22 sin(ς/2) . (39)

The entanglement of the state is usually measured in terms of the entropy

− cos(ς/2) log
(
cos(ς/2)

)
− sin(ς/2) log

(
sin(ς/2)

)
, (40)

and depends only upon this last angle.

As an example, we consider the maximally entangled singlet state |ψ 〉 ≡ (| 10 〉 − | 01 〉)/
√

2, which has the
Schmidt parameters

̺ = 1 , φ = τ = ϕ1 = ϕ2 = ϑ1 = 0 , ϑ2 = π , ς = − π/2 . (41)

It follows that the state is represented by

Ψ ≡ − G02
1√
2

(
1 + G22

)
P 1

3P
2
3 = 1√

2

(
G20 − G02

)
, (42)

which corresponds to the density operator

ΨP 1
3P

2
3 Ψ̃ = 1

4

(
1 − IG11 − IG22 − IG33

)
(43)

The next section will show that this is invariant under simultaneous rotations of both qubits together.



Figure 2. Combinatorial graph in which the vertices correspond to the basis vectors for a Bloch sphere model of each of
the two qubits ([e

1
, e

2
, e

3
] & [f

1
, f

2
, f

3
], respectively) and the edges to the corresponding bivector basis Gij . The dashed

ellipses enclose the induced subgraphs which correspond to the “local” subalgebras of the two Bloch sphere models, while
the perfect matching of a Cartan subalgebra is indicated by the heavier lines on edges of G11, G22, G33.

4.2. Cartan Decompositions and Subalgebras

Thus far, we have not done anything with our six-dimensional model and geometric algebra that could not
be done in the matrix algebra – which is probably a good thing since the matrix algebra is evidently able to
handle all of nonrelativistic qubit mechanics! Nevertheless, we hope to show that the additional degrees of
freedom present in our model do allow for some efficiency in notation, or at least serve a pneumonic in keeping
track of commutation relations. To this end we shall identity the basis vectors e1, . . . ,f3 with the vertices of a
combinatorial graph, and the corresponding bivector basis Gij with the edges (pairs of vertices) in the graph, as
depicted in Fig. 2. Any two nonidentical edges meeting at a common vertex then correspond to anticommuting
bivectors, while any pair of edges with no vertex in common correspond to commuting bivectors. Furthermore
the commutator of any pair of bivectors, the edges of which have a vertex in common, equals the bivector of
the edge connecting the other pair of vertices up to sign. From this one sees immediately that the edges in any
induced subgraph (i.e. a subset of the vertices together with all the edges between them), as bivectors, generate
a subalgebra e of the full bivector algebra. In addition, all the bivectors in this subalgebra commute with all
those bivectors with their edges in the complementary induced subgraph f (i.e. that induced by the complement
of the subgraph’s vertex set), and hence the product of these two subalgebras g ≡ e× f = f× e = e⊕ f is again a
subalgebra. And finally, the commutator of any bivector in g with a basis bivector, the edge of which connects a
vertex of the subgraph to a vertex outside of it, is either zero or else a bivector outside g of the same kind, while
the commutator of any two basis bivectors outside g is either zero or a bivector in the subalgebra.

Subalgebras of a Lie algebra which “absorb” their orthogonal complements like this are known as Cartan
decompositions.20 Their importance lies in the role they play in parametrizing Lie group of the full subalgebra, at
least in some neighborhood of the identity. To describe this fully, we need to also introduce the related concept
of a Cartan subalgebra, which is a subalgebra h generated by a maximal set of commuting basis bivectors in g⊥

(note that any noncommuting set of basis bivectors would not generate a subalgebra h ⊂ g⊥). Then if l is the
full Lie algebra in question and G, H and L are the Lie groups corresponding to the Lie algebras g, h and l,



respectively, we have
L = GH G , (44)

where the juxtaposition of Lie groups on the right-hand side indicates the composition of all possible pairs of
elements from these subgroups of L in the given order. For want of a better name, we shall call this a Cartan
factorization of the group.

The applications of Cartan factorizations to quantum control were first developed by Khaneja & Glaser,4

and their implications for the geometry of nonlocal two-qubit operations has been nicely worked out by Zhang
et al.,5 to which references the reader is directed for a full account. Here we are mainly interested in what new
insights our six-dimensional model and the graph theory notation for its bivectors can provide.

The most useful Cartan factorization, with regard to the “local” structure of SU(4), is that indicated by the
dashed ellipses in Fig. 2 as well as by our chosen notation. Each of the two sets of basis vectors {ei}, {fj}
generates a subalgebra G(3) of G(6), showing how the Bloch vector model of each qubit is embedded as a pair
of complementary three-dimensional orthogonal subspaces in six-dimensions. Any complete bipartite matching
between the corresponding complementary sets of three vertices each in the graph, i.e. any set of three edges
between the two sets with no vertices in common, then corresponds to a Cartan subalgebra; the most symmetric
choice is G11,G22,G33, as indicated in the figure. Equation (44) then says that any rotation in six dimensions
can be uniquely written as pair of rotations in complementary three-dimensional subspaces, rotations in three
mutually orthogonal planes each intersecting both three-dimensional subspaces in a line, and another pair of
rotations on the three-dimensional subspaces. This is of course perfectly analogous to the parametrization of
spin(3) by Euler angles, in which a three-dimensional rotation is expressed as a rotation about the z-axis, followed
by a rotation about the x-axis and finally a second z-rotation – and which can also be derived from a Cartan
decomposition.

As an example, consider the Cartan factorization of a unitary that maps between the local or computational
basis of a four-dimensional Hilbert space and the corresponding basis of Bell states. The matrix of this unitary
versus the local basis has the Bell states as its columns,

Q ≡ 1√
2









1 0 0 i

0 i 1 0

0 i −1 0

1 0 0 −i









, (45)

and its Cartan factorization, up to an overall phase (exercise!), may be written as

exp
(
− ϑ(G01 − G02 + G03)

)
exp
(
ϑ(G10 − G20 + G30)

)
exp
(
(π/4)G33

)
· · ·

exp
(
(π/

√
8)(G20 − G30)

)
exp
(
− ϑ(G01 + G02 + G03)

)
, (46)

where ϑ = 4π/
√

27. As noted in Ref. 21, this unitary transformation has the curious property of taking
the Pauli matrices into i times a set of anti-symmetric real matrices, which in turn generate the Lie algebra
so(4) ≈ so(3) ⊕ so(3).

Although it makes this isomorphism manifest in the standard Pauli matrix representation, Q defines a
relatively complicated mapping into the Bell basis. Indeed, it seems there is no way to identify the subalgebra
g = so(3)⊕ so(3) with a four-dimensional subspace within our six-dimensional model. A much simpler mapping
into the Bell basis is defined by

Q′ ≡ 1√
2









1 0 0 1

0 1 1 0

0 −1 1 0

−1 0 0 1









, (47)



which has the Cartan factorization

exp
(
− ϑ(G01 + G02 + G03)

)
exp
(
iϑ(G10 + G20 + G30)

)
exp
(
(π/4)G33

)
· · ·

exp
(
ϑ(G01 + G02 + G03)

)
exp
(
− ϑ(G10 + G20 + G30)

)
, (48)

and is therefore just a single rotation in the plane of the bivector G21. The action of Q & Q′ on the full set of
su(4) generators is summarized in Table 3, which indicates by their position in the table to which basis bivector
each basis bivector is mapped by this transformation.

Table 3. (a) left & (b) right

Q†GijQ · 0 · 1 · 2 · 3

0 · G00 G23 −G01 −G22

1 · G31 −G12 −G30 −G13

2 · −G20 −G03 G21 G02

3 · G11 G32 −G10 G33

Q′†GijQ
′ · 0 · 1 · 2 · 3

0 · G00 G01 −G23 G22

1 · G31 G30 G12 G13

2 · G20 G21 −G03 G02

3 · −G11 −G10 G32 G33

Because our choice of basis in each of the two “local” subspaces is arbitrary, we see the essence of a trans-
formation into the Bell basis really lies in the fact that it is a simple rotation by π/2 in a plane that meets both
those subspaces orthogonally in a line. There are of course other types of unitary transformations that can also
produce entanglement, for example the SWAP or particle interchange operator,

Π ≡ 1
2

(
1 + IG11 + IG22 + IG33

)
= exp

(
(π/4) (G11 + G22 + G33)

)
. (49)

This is clearly a simultaneous rotation of one of the two qubits’ subspaces onto the other, such that the chosen
coordinate frames coincide. Clearly the same rotation is obtained however these two frames are chosen, so long
as they remain parallel with one another. The generator of this rotation is also intimately connected to the
singlet state, the density operator of which likewise contains it (Eq. (43)). This can be regarded as an intuitive
explanation for the singlet’s invariance under simultaneous joint rotations of both qubits.7

5. CLOSING REMARKS

In this article have briefly surveyed some of the insights that our model of two qubits in the geometric algebra of a
six-dimensional Euclidean vector space can provide. There are certainly many more to come. For one, the graph
theoretical interpretation of the bivector algebra makes it clear that any bipartition of a set of orthonormal basis
vectors will give rise to a Cartan decomposition, and that any maximal bipartite matching between the vertex
sets will be a Cartan subalgebra. For example, the bipartition {e1,f1} & {e2,f2, e3,f3} gives a subalgebra
g isomorphic to so(2) ⊕ so(4), which is seven dimensional. A Cartan subalgebra h is generated by G30,G03,
providing another two degrees of freedom, and allowing us to generate all of SO(6) with 7+2+7 = 16 parameters.
Because SO(6) is only 15 dimensional, there is clearly an ineffective degree of freedom. To identify it, we factorize
SO(4) using the Cartan decomposition g′ obtained from the further bipartition {e2,f2} & {e3,f3}, together with
a matching Cartan subalgebra h′ generated by G10,G01. Then since G33 = e3f3 commutes with the generators
G30,G03 in the first Cartan subalgebra h, the difference of their corresponding multipliers in the exponentials
is clearly ineffective, and we have shown that SU(4) can also be written as a product of exponentials in the
following sets of generators in right-to-left order:

{G22,G33}, {G10,G01}, {G11,G22}, {G30,G03,G33}, {G11,G22}, {G10,G01}, {G22,G33}, (50)

where we have combined the middle two copies of G33 ∈ g′ into the first Cartan subalgebra h for simplicity.



There is also a close connection between Cartan and Schmidt decompositions, in that the latter may be
obtained from the former simply by dropping all parameters that are ineffective when the transformation is
applied to the projectors P 1

3P
2
3 . It might be interesting to work out what the 15 − 6 = 9 ineffective parameters

are in the above Cartan factorization when it is used to derive a Schmidt-like decomposition in this way. There
are, of course, many others as well.

We have not yet paid much attention to the odd grade entities in G(6), but there are reasons to believe they
may provide additional notational efficiency in the description of various completely positive trace-preserving
linear maps of G

+(6) into itself. For example, Kraus sums of the form

Mkρ ≡ ρ+ 1
4 ek ρ̂ek

(
k = 1, . . . , 6 ; ρ̂ ≡ ρ− 1

4

)
(51)

may be shown to lie on the boundary of the convex set of all completely positive trace-preserving linear maps.
By composing these maps together in all possible ways and taking convex combinations, we expect to obtain the
full 96-dimensional space of such maps. It would be particularly interesting to see if certain physically important
processes (such as the nuclear Overhauser effect in NMR22), which cannot be described by a small number of
Kraus operators in the matrix algebra, admit more concise description when sums involving odd entities are also
utilized.

Finally, we point out that although the so(3) ≈ su(2) and so(6) ≈ su(4) isomorphisms do not extend to
larger numbers of qubits, geometric algebra has been used to derive a complete and relativistically covariant
theory of multi-qubit systems.14–16 Like the six-dimensional model dealt with here, these higher spin models
introduce additional degrees of freedom which, although apparently physically irrelevant, may nevertheless be
of some mathematical utility. It could be a useful exercise to derive the six-dimensional model from within the
framework of this more general theory, and gain more insight into the these extraneous degrees of freedom.
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