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Thermal spin flips in atom chips
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We derive a general expression for the spin-flip rate of an atom trapped near an arbitrary dielectric
body and we apply this theory to the case of a 2-layer cylindrical metal wire. The spin flip lifetimes
we calculate are compared with those expected for an atom near a metallic slab and with those
measured by Jones et al. above a 2-layer wire [M.P.A. Jones, C.J. Vale, D. Sahagun, B.V. Hall, and
E.A. Hinds, Phys. Rev. Lett. 91, 080401 (2003)]. We investigate how the lifetime depends on the
skin depth of the material and on the scaling of the dimensions. This leads us to some conclusions
about the design of integrated circuits for manipulating ultra-cold atoms (atom chips).

PACS numbers: 42.50.Ct,34.50.Dy,03.75.Be

I. INTRODUCTION

Microscopic traps provide a powerful tool for the con-
trol and manipulation of Bose-Einstein condensates over
micrometer distances. Microstructured surfaces, known
as atom chips, are particularly interesting for this pur-
pose since they can be tailored to provide a variety of
trapping geometries [1] and promise well-controlled quan-
tum state manipulations of neutral atoms in integrated
and scalable microtrap arrays. Ultimately there is the
possibility of controlling the quantum coherences within
arrays of individual atoms for use in quantum informa-
tion processing [2]. This technology is attractive because
it appears robust and scalable and because trapped neu-
tral atoms can have long coherence times.

However, atoms in these traps are held close to the
micro-structured material surfaces, which are typically
at room temperature. Thermal fluctuations give rise to
Johnson noise currents in the material [3]. Such currents
are normally observed as a noise voltage across a resis-
tor, but they also cause the electromagnetic field near
a conducting solid to fluctuate with a broad noise spec-
trum. For atoms trapped close to the surface of a con-
ductor these fluctuating fields can be strong enough to
drive rf magnetic dipole transitions that flip the atomic
spin. If the atom is in a magnetic trap where only low-
field-seeking Zeeman sublevels are confined, the spin flips
lead to atom loss. This is known experimentally [4, 5] as
well as theoretically [6]. The loss rate increases strongly
as the atoms approach the metallic surface of an atom
chip. For a given desired lifetime, this restricts how close
the trapped atoms can be brought to the surface, which
in turn determines the period of the smallest trapping
structures that can be imposed on the atom by the chip.

The paper is organized as follows: In Section II we in-
troduce the basic equations and discuss the quantization
of an electromagnetic field in the presence of a dispersing
and absorbing dielectric body. Then, in Section III, we
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derive a general expression for the spontaneous and ther-
mal spin-flip rates of an atom due to the coupling of its
magnetic moment to the magnetic field. This derivation
is based on the Zeeman Hamiltonian of the system and
the corresponding Heisenberg equations of motion. We
show that the spin-flip rate is determined by the dyadic
Green tensor of the classical, phenomenological Maxwell
equations. In Section IV we present the scattering Green
tensor for a 2-layer cylindrical body surrounded by an un-
bounded homogeneous medium, with details being given
in Appendix A. Then, in Section V, we use this Green
tensor to obtain an explicit analytical expression for the
total spin-flip rate of an atom above a 2-layer wire. Some
numerical results are presented and discussed in Section
VI. The numerical results are compared with the cor-
responding results for a slab and with the experimental
measurements presented by Jones et al. in Ref. [4]. Our
conclusions are given in Section VII.

II. BASIC EQUATIONS AND QUANTIZATION

In classical electrodynamics, dielectric matter is com-
monly described in terms of a phenomenologically intro-
duced dielectric susceptibility. Let us consider a classical
electromagnetic field, described by the phenomenologi-
cal Maxwell’s equations, without external sources. We
restrict our attention to isotropic but arbitrarily inhomo-
geneous non-magnetic media, and assume that the polar-
ization responds linearly and locally to the electric field.
A linear response formalism similar to that presented be-
low can also be found in Refs. [7, 8].

The most general relation between the matter polar-
ization and the electric field consistent with causality and
the fluctuation-dissipation theorem is [9]

P(r, t) = ε0

∞∫

0

dτ χ(r, τ)E(r, t − τ) + PN (r, t) , (1)

where χ(r, t) is the linear susceptibility. The inclusion
of the noise polarization PN (r, t) is necessary to fulfil
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the fluctuation-dissipation theorem. It is this fluctuating
part of the polarization that is unavoidably connected
with the loss in the medium. Converting the displace-
ment field D(r, t) = ε0E(r, t)+P(r, t) into Fourier space
using Eq. (1), we obtain

D(r, ω) = ε0ε(r, ω)E(r, ω) + PN (r, ω) , (2)

where ε(r, ω) is the complex permittivity and ε(r, ω)− 1
is the temporal Fourier transform of χ(r, t). The real
part of the permittivity (εR, responsible for dispersion)
and the imaginary part (εI , responsible for absorption)
are related to each other by the Kramers-Kronig relation.

Using Maxwell’s equations in Fourier space, we find
that E(r, ω) satisfies the Helmholtz equation

∇×∇× E(r, ω) − ω2

c2
ε(r, ω)E(r, ω) = ω2µ0PN (r, ω) ,

(3)
with the solution

E(r, ω) = ω2µ0

∫
d3

r
′ G(r, r′, ω) · PN (r′, ω) , (4)

where the Green tensor G(r, r′, ω) is a second-rank tensor
determined by the partial differential equation

∇×∇×G(r, r′, ω)− ω2

c2
ε(r, ω)G(r, r′, ω) = δ(r− r

′)U ,

(5)
where U is the unit dyad. Together with the boundary
condition at infinity, this equation has a unique solution.
In accordance with Maxwell’s equations the correspond-
ing solution for the magnetic field in Fourier space is
B(r, ω) = (iω)−1∇× E(r, ω) .

As we have seen, the noise polarization PN (r, t) plays
a fundamental rôle in determining the electric field. The
form of PN (r, t) follows from the fluctuation-dissipation
theorem, which states that the fluctuations of the macro-
scopic polarization are given by the imaginary part of the
response function [here εI(r, ω)]. If we pull out a factor
and define the dynamical variables f(r, ω) as the funda-
mental δ-correlated random process, we find that we can
write the noise polarization as [7]

PN (r, ω) = i

√
h̄ε0
π

εI(r, ω) f(r, ω) . (6)

Upon quantization, we replace the classical fields f(r, ω)

by the operator-valued bosonic fields f̂(r, ω) which we
associate with the elementary excitations of the system
composed of the electromagnetic field and the absorbing
dielectric matter. They satisfy the equal-time commuta-

tion relations [f̂i(r, ω), f̂ †
j (r′, ω′)] = δijδ(r− r

′)δ(ω−ω′).
The magnetic-field operator in the Schrödinger picture

can now be obtained as

B̂(r) = B̂
(+)(r) + B̂

(−)(r) , B̂
(−)(r) = [B̂(+)(r)]† (7)

where

B̂
(+)(r) =

∞∫

0

dω B̂(r, ω) , (8)

is its positive-frequency part. In this way, the electro-
magnetic field is expressed in terms of the classical Green
tensor satisfying the Helmholtz equation (5) and the con-

tinuum of the fundamental bosonic field variables f̂ (r, ω).
All the information about the dielectric matter is con-
tained, via the permittivity ε(r, ω), in the Green tensor
of the classical problem.

We close this Section by mentioning two important
properties of the Green tensor. It can be shown that the
(Onsager) reciprocity relation G(r, r′, ω) = GT (r′, r, ω)
holds [10]. Additionally, another useful property is the
integral relation

∫
d3

r
′ ω

2

c2
εI(r

′, ω)Gkl(r, r
′, ω)G∗

nl(rA, r
′, ω) (9)

= ImGkn(r, rA, ω) ,

which we will use later in this paper. Both relations es-
sentially follow from linear response theory, with Eq. (9)
being equivalent to the fluctuation-dissipation theorem
[11]. It should be noted that we assume the dielectric
permittivity to possess at least an infinitesimal imagi-
nary part everywhere to avoid surface contributions in
Eq. (9).

III. DERIVATION OF THE SPONTANEOUS

AND THERMAL SPIN FLIP RATES

The Hamiltonian of the combined system of electro-
magnetic field and absorbing matter, from which the
(quantized) phenomenological Maxwell’s equations can
be derived, can be written in terms of the basic field op-

erators f̂ (r, ω) in the diagonal form

Ĥ =

∫
d3

r

∞∫

0

dω h̄ω f̂
†(r, ω) · f̂ (r, ω) +

∑

α=i,f

h̄ωαξ̂α ,

(10)
which leads in the Heisenberg picture to the (quasi-free)

time evolution f̂ (r, ω) → f̂(r, ω)e−iωt. Here we have also

included an atom through the operators ξ̂α ≡ |α〉〈α| and
the energy h̄ωα of the atomic state |α〉 (α = i, f).

The interaction of the atom at position rA with a mag-
netic field B̂(r) is described by the Zeeman Hamilto-

nian ĤZ = −µ̂ · B̂(rA), where µ̂ = µ|i〉〈f | + h.c. is the
magnetic moment operator associated with the transition
|i〉 → |f〉. The magnetic moment vector is

µ = 〈i| µB

(
gSŜ + gLL̂ − gI

me

mp
Î

)
|f〉 , (11)

where µB is the Bohr magneton, Ŝ is the electronic spin
operator, L̂ is the orbital angular momentum operator,
Î is the nuclear spin operator and gS ≈ 2, gL and gI are
the corresponding g-factors. We restrict our attention
to L = 0, which corresponds to the ground state of an
alkali atom, and we neglect the small nuclear magnetic
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moment in comparison with the Bohr magneton. In the
rotating-wave approximation, we can then write the Zee-
man Hamiltonian as

ĤZ ≈ −µBgS

[
〈f |Ŝq|i〉 ξ̂(+)B̂(+)

q (rA) + h.c.
]
, (12)

where the atomic raising (lowering) operator ξ̂(+) ≡
|i〉〈f | [ξ̂(+) = (ξ̂(−))†] satisfies the commutation relation

[ ξ̂z, ξ̂
(±)] = ±ξ̂(±), with ξ̂z ≡ 1

2 (|i〉〈i|− |f〉〈f |). Repeated
indices q indicate a sum over spatial vector components.

Using the Hamiltonian (12), the Heisenberg equation

of motion for the atomic quantity ξ̂z(t) is given by

˙̂
ξz(t) = −µBgS

ih̄
〈f |Ŝq|i〉 ξ̂(+) B̂(+)

q (rA) + h.c. . (13)

Furthermore, the Heisenberg equation of motion for the
bosonic field operator is

˙̂
fi(r, ω, t) = −iωf̂i(r, ω, t) (14)

+
iµBgS√
h̄πε0

〈i|Ŝq|f〉 ξ̂(−)ǫqpj∂p
ω

c2

√
εI(r, ω)G∗

ji(rA, r, ω) ,

where ǫqpj is the Levi-Civita symbol and ∂j ≡ ∂/∂xj.
This equation can now be formally integrated to yield

f̂i(r, ω, t) = f̂i,free(r, ω, t) +

t∫

t′

dτ e−iω(t−τ)ξ̂(−)(τ) (15)

× iµBgS√
h̄πε0

〈i|Ŝq|f〉 ǫqpj ∂p
ω

c2

√
εI(r, ω)G∗

ji(rA, r, ω) ,

where f̂i,free(r, ω, t) denotes the freely evolving basic-field

operators. The lowering operator ξ̂(−)(τ) in Eq. (15) can
be found by solving its Heisenberg equation of motion. In
the Markov approximation, this solution can be reduced

to its slowly varying part ξ̂(−)(t) eiωif (t−τ) in Eq. (15) so
that the time integral can be approximated by

f̂i(r, ω, t) = f̂i,free(r, ω, t) +
iµBgS√
h̄πε0

〈i|Ŝq|f〉 ξ̂(−)(t)

×ǫqpj ∂p
ω

c2

√
εI(r, ω)G∗

ji(rA, r, ω) ζ(ωif − ω) , (16)

where ζ(x) = πδ(x) + iPx−1 (P denotes the principal
value) and ωif ≡ ωi −ωf is the transition frequency cor-
responding to the flip |i〉 → |f〉 in the atom’s internal
state. Substituting this formal solution into the expres-
sion for the magnetic field, we obtain

B̂(+)
q (rA, ω, t) = B̂

(+)
q,free(rA, ω, t)

+
iµBgSµ0

π
〈i|Ŝp|f〉ǫqjkǫpmn∂j∂m ξ̂(−)(t) ζ(ωif − ω)

×
∫
d3

r
ω2

c2
εI(r, ω)Gkl(rA, r, ω)G∗

nl(rA, r, ω) . (17)

The spatial integral can be evaluated using the integral
relation Eq. (9) yielding ImGkn(rA, rA, ω). Therefore,

Eq. (17) becomes

B̂(+)
q (rA, ω, t) = B̂

(+)
q,free(rA, ω, t)

+
iµBgSµ0

π
〈i|Ŝk|f〉 ξ̂(−)(t) ζ(ωif − ω)

× Im[ ∇×∇× G(rA, rA, ω) ]qk . (18)

Performing the ω-integration and inserting into Eq. (13),
we obtain

˙̂
ξz(t) = −( ΓB + iδω ) [

1

2
+ ξ̂z(t) ]

+

[
iµBgS

h̄
〈f |Ŝq|i〉 ξ̂(+) B̂

(+)
q,free(rA) + h.c.

]
, (19)

where the spontaneous spin-flip rate ΓB ≡ ΓB(rA, ω̃if )
arises from the δ function (the real part of the ζ function)
and is given by

ΓB = µ0
2 (µBgS)2

h̄
〈f |Ŝq|i〉〈i|Ŝp|f〉

× Im [ ∇×∇× G(rA, rA, ω̃if ) ]qp , (20)

and where the term δω arises from the principal-value
integral (the imaginary part of the ζ function) and is
identified as the radiative frequency shift. Furthermore,
the shifted frequency is given by ω̃if = ωif +δω. In what
follows, the transition frequency is always taken to be the
shifted frequency ω̃if that one measures in an experiment
and not the bare frequency ωif ≡ ω. For simplicity, we
omit the tilde in all subsequent formulas. Note that the
same result for ΓB is obtained when using an appropri-
ately derived master equation as done in Ref. [6].

We assume that the dielectric body is in thermal equi-
librium with its surroundings. The magnetic field is then
in a thermal state with a temperature T , equal to the
temperature of the dielectric body. The total flip rate
for the atom is therefore given by ΓB

total = ΓB(nth + 1),
where the mean thermal occupation number is

nth =
1

eh̄ωif /kBT − 1
, (21)

and kB is Boltzmann’s constant. At zero temperature,
i.e. nth = 0, the relaxation dynamics is entirely due to
the spontaneous flip rate ΓB. For large T on the other
hand, nth ≈ kBT

h̄ωif
≫ 1 and the spin flip rate is predomi-

nantly induced by thermal fluctuations.
In the experiment of Ref. [4] 87Rb atoms are initially

pumped into the trapped state |F,m〉 = |2, 2〉. Thermal
fluctuations of the magnetic field then cause the atoms
to evolve into hyperfine sublevels with lower mF . Upon
making a transition to the mF = 1 state, the atoms are
more weakly trapped and are largely lost from the re-
gion of observation, causing the measured atom number
to decay with a rate ΓB

21. Here we are introducing the no-
tation ΓB

mimf
for the total spin-flip rate associated with

the transition |2,mi〉 → |2,mf 〉.
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IV. THE DYADIC GREEN TENSOR

The geometry we are considering in this paper is a 2-
layer cylinder surrounded by an unbounded homogeneous
medium (see Fig. 1). This corresponds to the experimen-
tal geometry in Ref. [4]. Because the Helmholtz equation

a2a1

layer 1

layer 2
layer 3
(vacuum)

x

y

z r

atom

FIG. 1: The geometry we are considering is a 2-layer cylin-
der surrounded by an unbounded homogeneous medium. The
outer region is labelled layer 3 (vacuum), the coating is layer 2
and the cylinder core is layer 1. The distance from the surface
of the outermost layer to the atom is r.

is linear, the associated Green tensor can be written as a
sum,

G(r, r′, ω) = G0(r, r′, ω) + Gwire(r, r′, ω) , (22)

where G0(r, r′, ω) represents the contribution from the
vacuum and Gwire(r, r′, ω) describes the part due to the
wire. When the atom is located in layer 3, the scattering
contribution is [12]

Gwire(r, r′, ω) =
i

8π

∫ ∞

−∞

dh

∞∑

n=0

2 − δ0n

η2
3

Rn(h) , (23)

where

Rn(h) =

R11
n (h)

[
N

(1)
en (h)N

′(1)
en (−h) + N

(1)
on (h)N

′(1)
on (−h)

]

+ R12
n (h)

(
−ωε3
k3

)
(24)

×
[
N

(1)
en (h)M

′(1)
on (−h) − N

(1)
on (h)M

′(1)
en (−h)

+M
(1)
en (h)N

′(1)
on (−h) − M

(1)
on (h)N

′(1)
en (−h)

]

+ R22
n (h)

[
M

(1)
en (h)M

′(1)
en (−h) + M

(1)
on (h)M

′(1)
on (−h)

]
.

For simplicity, we have omitted the tensor product sym-
bol ⊗ between the even and odd cylindrical vector func-
tions defined by Me

on(h) = ∇× [ψe
on(h)z] and Ne

on(h) =
∇×∇× [ψe

on(h)z]/k3. The scalar eigenfunctions ψe
on(h)

satisfy the homogeneous scalar wave equation [12]. It
follows from these definitions that

∇× Me
on(h) = k3Ne

on(h) , (25)

∇× Ne
on(h) = k3Me

on(h) . (26)

Explicitly,

Ne
on(h) =

1

k3

[
ih
dZn(η3ρ)

dρ

cos
sin

(nφ)eρ (27)

∓ihn
ρ
Zn(η3ρ)

sin
cos

(nφ)eφ + η2
3Zn(η3ρ)

cos
sin

(nφ)ez

]
eihz ,

Me
on(h) =

[
∓ n

ρ
Zn(η3ρ)

sin
cos

(nφ)eρ

− dZn(η3ρ)

dρ

cos
sin

(nφ)eφ

]
eihz . (28)

The primes in Eq. (24) indicate the spherical coordinates
(ρ′, φ′, z′). The superscript (1) indicates that Zn should

be replaced by the Hankel function of first kind H
(1)
n .

Otherwise, Zn is the Bessel function of first kind Jn. The
propagation constant in the ρ direction is η2

p = k2
p − h2,

where kp is the wave number of the pth layer. The per-
mittivity of the pth layer is denoted by εp. The scatter-
ing reflection coefficients Rkl

n (h) are given in Appendix A
(k, l = 1, 2).

The double curl of the Green tensor in Eq. (23) can be
written

∇×∇′ × G
wire(r, r′, ω) = (29)

i

8π

∞∑

n=0

(2 − δ0n)




(In)xx (In)xy (In)xz

(In)yx (In)yy (In)yz

(In)zx (In)zy (In)zz


 ,

where

In ≡ In(r, r′, ω) =

∫ ∞

−∞

dh
1

η2
3

∇×∇′ × Rn(h) . (30)

Note that the curls are computed by replacing Ne
on(h)

by Me
on(h) and vice versa, according to Eqs. (25)

and (26). Also note that the integration variable h is
the wave number in the z-direction (see Fig. 1). From
the symmetry of the integrand, it is easy to show that
(I lim

n )xz = (I lim
n )zx = (I lim

n )yz = (I lim
n )zy = 0, where

(I lim
n )ij ≡ limr→r

′ (In(r, r′, ω))ij (i, j = x, y, z). Note
that the (Onsager) reciprocity relation as mentioned in
Section II implies that (I lim

n )ij = (I lim
n )ji.

V. THE SPIN FLIP RATE OUTSIDE A 2-LAYER

WIRE

The spin-flip rate in free space is readily derived
from Eq. (20) since Im[∇ × ∇× G0(rA, rA, ωif )]qp =
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(k3
3/6π) δqp, where k3 = ω/c is the free space wave num-

ber corresponding to the atomic transition. We use the
notation k3 here because in our discussion of the cylin-
drical wire, the third layer is a vacuum. Hence

Γ 0
if = µ0

(µBgS)2

3π h̄
k3
3S

2
if , (31)

where we have introduced the angular factor S 2
if ≡

|〈i|Ŝx|f〉|2 +|〈i|Ŝy|f〉|2 = 2 |〈i|Ŝx|f〉|2. We do not have a

term containing Ŝz since we are interested here in a spin
flip, which by definition changes mF . We have moreover
used the fact that the two transverse matrix elements are
equal in absolute value as a result of symmetry. For the
87Rb ground state transition |F,mF 〉 = |2, 2〉 → |2, 1〉,
the angular factor S 2

21 = 1/8 [18].
In order to find the contribution of the wire to the

spontaneous spin-flip rate, we use Eqs. (20) and (29).
The quantization axis is taken to be along the z direction,
corresponding to the direction of the bias field that the
trapped atoms experience in the experiment. We obtain

Γwire
if =

3

8
Γ 0

if

∞∑

n=0

(2 − δ0n)Re
[
(Ĩ lim

n )xx + (Ĩ lim
n )yy

]
.(32)

Here we have once again used the facts that |〈i|Ŝx|f〉|2 =

|〈i|Ŝy|f〉|2 and that 〈i|Ŝz|f〉 = 0. The dimensionless in-

tegrals (Ĩ lim
n )ij ≡ (I lim

n )ij/k
3
3 are given by

(Ĩ lim
n )xx + (Ĩ lim

n )yy =

∫ ∞

−∞

dq
1

η̃2
3

× (33)

{
[R11

n (q) + q2R22
n (q) ][ (Hn3)

2 n2

k2
3(a2 + r)2

+ (η̃3H
′
n3)

2 ]

+2iqR12
n (q)

(
−ωε3
k3

)
η̃3(H

2
n3)

′ n

k3(a2 + r)

}
,

since ρ = a2 + r. We have used the simplified notation
Znp ≡ Zn(η̃pk3ρ) and the primes in Eq. (33) denote the
derivative with respect to the full argument of the rele-
vant function, e.g. Z ′

np ≡ dZn(η̃pk3ρ)/d(η̃pk3ρ). We have
also chosen to write the permittivity of the pth layer rel-
ative to the outermost layer, i.e. εp = ε3ε

rel
p . The wave

number for layer p is then given by k2
p = k2

3ε
rel
p , and

the dimensionless propagation constant η̃p ≡ ηp/k3 in

the ρ direction can be written as η̃p =
√
εrelp − q2, where

q ≡ h/k3 is the dimensionless integration variable.
The skin depth is the characteristic length scale on

which an electromagnetic wave is damped within a con-
ducting medium. It is given by δp =

√
2ε0ρpω/k0 (see

e.g. Ref. [13]), where ρp is the resistivity of layer p. Since
the spin-flip frequency is very much lower than the reso-
nance frequencies of the material in the wire, the relative
permittivity is related to the skin depth by [13]

εrelp ≈ i

ε0ρpω
= i

2

k2
0δ

2
p

. (34)

We see from Eq. (22) that the total spin-flip rate is
equal to the sum of the free space contribution and the
scattering contribution. The total spin-flip rate for the
rate-limiting transition |2, 2〉 → |2, 1〉 is therefore

ΓB
21 =

(
Γ 0

21 + Γwire
21

)
(nth + 1) . (35)

VI. NUMERICAL RESULTS

In the experiment of Ref.[4], cold atoms are held in a
microscopic trap near a current-carrying wire assumed
to be at room temperature. The lifetime for atoms to
remain in the microtrap is measured over a range of
distances down to 27µm from the surface of the wire.
The wire consists of a central copper core with radius
a1 = 185µm and a 55µm thick aluminium layer, i.e.
a2 = 240µm. Using Eq. (34), the resistivities ρ1 =
1.6 · 10−8 Ωm for Cu and ρ2 = 2.7 · 10−8 Ωm for Al give
skin depths of δ1 = 85µm for Cu and δ2 = 110µm for Al
at frequency f = ω/2π = 560 kHz.

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

τ (s)

r (µm)

FIG. 2: Lifetime τ of the trapped atom as a function of
the atom-surface distance r. Dotted curve: calculated spin-
flip lifetime near a 2-layer wire at 300 K with the parameters
f = 560 kHz, a1 = 185 µm, a2 = 240 µm, δ1 = 85 µm, and
δ2 = 110 µm. Solid curve: The same but at 380 K. Dot-dashed

curve: calculated lifetime near a thick Al slab at 380 K with
δ = 110 µm (using Eq. (35) of Ref. [6]). Crosses: measured
lifetimes of Ref. [4].

The dotted line in Fig. 2 shows the lifetime τ = 1/ΓB
21

that we have calculated assuming a temperature of 300 K,
together with the measured lifetimes (crosses). We see
that the experimental results are close to the theory, in-
dicating that the thermal spin flip mechanism is the pri-
mary cause of atom loss in the experiment. Neverthe-
less there is also a clear systematic discrepancy, with the
measured lifetimes being 20−30% shorter than expected.
We find excellent agreement when the temperature in our
theory is increased to 380 K, as shown by the solid curve
in Fig. 2. We have re-examined the conditions under
which the experiment was run and consider it most likely
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that the wire temperature was indeed ∼ 380 K, rather
than the 300 K previously assumed. Such a temperature
rise would be consistent with known power dissipation
and with reasonable assumptions about the heat flow. In
effect, the thermally driven spin flips have allowed us to
measure the temperature of the wire!

The theory for the decay rate of an atom above a plane,
thick slab is already known [6]. Applying this theory to
an Al slab with skin depth δ = 110µm and temperature
380 K, we obtain the result shown dot-dashed in Fig. 2.
This curve lies below that for the wire, simply reflecting
the fact that the slab contains a larger volume of fluc-
tuating polarization than the wire. Naturally, the two
380 K curves converge at sufficiently small atom-surface
distances (r ≪ δ2, δ1, a2), and in that range they vary
linearly with distance [6].

1

10

100

1 10 100 1000

τ (s)

δ2 (µm)

FIG. 3: Lifetime τ of the trapped atom as a function of the
skin depth δ2 of the outer layer. The atom-surface distance
is fixed at r = 50 µm. The other parameters are: f = 560
kHz, T = 300 K, a1 = 185 µm, a2 = 240 µm, and δ1 = 85 µm.
The straight dashed line represents the large δ2 limit. The
numerical value for this limit is 52 s.

The lifetime for the atom to remain in the trap exhibits
a minimum with respect to variation of the skin depth,
as illustrated in Fig. 3, where the skin depth of the wire
core δ1 is fixed at 85µm but the skin depth of the outer
layer δ2 is varied. Below the minimum at δ2 ≃ 20µm,
a decrease of skin depth leads to an increase of lifetime
in proportion to δ−1

2 . This happens despite a growth in
the polarization noise [see Eqs. (6) and (34)] because
the region generating the noise is becoming thinner. In
the small δ2 limit the outer layer approaches a perfect
conductor, the core wire does not play any role, and the
lifetime becomes exceedingly long. By contrast, when the
skin depth increases above 20µm, the reduction in polar-
ization noise is more influential than the growth of the
source volume. In this region it is the worse conductor
that gives the longer lifetime. At large δ2, the outer layer
of the wire approaches the free space limit, and the life-
time is entirely determined by the skin depth and radius
of the core. From a practical viewpoint it would normally

be desirable to avoid the minimum of the lifetime curve.
This means avoiding surface materials whose skin depth
at the spin flip frequency is comparable with the atom-
surface distance. This is a generic result. For example,
at height z above a slab, one obtains the shortest lifetime
when the skin depth is z/31/3, as is readily derived from
equation (23) of Ref. [6].

0.1
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100
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10000

1 10 100 1000

τ (s)

r (µm)

FIG. 4: Lifetime τ as a function of atom-surface distance r,
with r, a1 and a2 scaling together according to a2 = 5r and
a1 = (185/240)a2 . The other parameters are: f = 560 kHz,
T = 300 K, δ1 = 85 µm, and δ2 = 110 µm.

From the same perspective of cold atoms trapped
above small integrated circuits (atom chips) it is also
interesting to see how the lifetime is altered when the
dimensions a1, a2 of the wire are varied or the atom-
surface distance r changes. For example, let us scale
all three lengths together, such that r = a2/5 and
a1 = (185/240)a2, while the skin depths are fixed. The
result of such a scaling is illustrated in Fig. 4. When the
atom-surface distance is large compared with the skin
depth, i.e. r = a2/5 ≫ δ2 ∼ 100µm, the spin-flip life-
time scales as ∼ r4. This has the same exponent as the z4

scaling of lifetime that applies at distance z from a slab
in the range where z ≫ δ [6]. The correspondence seems
natural to us since the wire is essentially a curved slab
when the skin depth is small. For a given ratio of atom-
surface distance to wire size, the two lifetimes should
therefore be related by a constant geometrical factor, re-
sulting in the same distance scaling. At the opposite
extreme, where z ≪ δ, the slab result is τ ∝ z. By con-
trast, we see in Fig. 4 that the lifetime outside the wire
approaches a constant when a2 = 5r ≪ δ2. This differ-
ence occurs because the thickness of the source region is
not the skin depth, but rather the diameter of the wire,
which we are scaling linearly with r. In a similar way,
it is possible to lengthen the lifetime of an atom above
a slab by reducing the thickness of the slab to less than
the skin depth [4].

As a second example of scaling, we change the diame-
ter of the wire, keeping a1 = (185/240)a2 but fixing the
distance from the surface at 50µm. Once again the skin
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depths are fixed. The resulting variation in the lifetime
of the atom with wire size is shown in Fig. 5. At large
wire diameter, the lifetime approaches 8.2 s, which is of
course the same as the lifetime 50µm above a slab with
110µm skin depth. By contrast, when the wire size is
small, i.e. a2 ≪ r, δ2, the decreasing volume of mate-
rial leads to a a−3

2 scaling of the lifetime. In the limit
a2 → 0, Γwire

if vanishes and the lifetime for the atoms to
remain in the trap is just the free-space blackbody rate
given by the first term in Eq. (35). For f = 560 kHz
and T = 300 K, this free space lifetime is an astonishing
∼ 1018 s (see also [14]). This figure emphasizes the very
low strength of the electromagnetic field fluctuations in
free space compared with those near a dielectric medium
due to the surface modes.
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FIG. 5: Lifetime τ as a function of outer wire radius a2

with the atom-surface distance fixed at r = 50µm. The in-
ner radius is scaled according to a1 = (185/240)a2 . Other
parameters are: f = 560kHz, T = 300K, δ1 = 85µm, and
δ2 = 110µm. Dotted line: the large a2 limit.

VII. CONCLUSIONS

In this paper we have derived the magnetic spin flip
rate for an atom close to an absorbing dielectric body.
The rate is given in terms of a dyadic Green tensor, allow-
ing the expression to be applied in principle to a dielectric
body of any shape. We derive an explicit expression for
the spin-flip rate of an atom outside a 2-layer cylindrical
wire, as used in the experiment of Jones et al. [4]. We
compare our numerical results with their measurements
and we find lifetimes marginally longer than those mea-
sured in the experiment. The most likely explanation for
this discrepancy is that the wire was hotter than pre-
viously thought. We also compare the cylindrical case
with that of a slab and show that the spin-flip lifetime
is systematically longer above a cylinder, as one would
expect.

We have investigated how the lifetime of the atoms
depends on the skin depth of the material. We find

the generic result that there is a minimum in the life-
time when the skin depth is comparable with the atom-
surface distance. When the dimensions of the wire and
the atom-surface distance r are varied together, the life-
time scales as r4 at large r, following the same scaling law
as a corresponding plane, thick slab, whereas the lifetime
approaches a constant at small r. If instead we fix the
atom-surface distance and vary only the dimensions of
the wire, the lifetime scales as r−3 when the wire is small,
leaving only the very weak free-space decay rate in the
limit of a vanishing wire diameter. The main conclusion
for atom chip design is that one should avoid a material
whose skin depth at the spin flip transition frequency is
comparable with the atom-surface distance. The lifetime
can also be improved by making sure that metal films on
the surface are thinner than the skin depth.
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APPENDIX A: THE SCATTERING

REFLECTION COEFFICIENTS

The scattering reflection coefficients for a cylindrical
geometry can be computed for any number of layers (see
e.g. Refs. [12, 15, 16, 17]). In this Appendix we present
the explicit expressions for the scattering reflection coef-
ficients corresponding to our 3-layer cylindrical geometry.
To find these reflection coefficients we have used the it-
eration tensor equations in Ref. [12]. These iteration
equations are given for arbitrary complex permittivity
εp and arbitrary complex permeability µp. Therefore,
the reflection coefficients presented in this Appendix ap-
ply to arbitrary εp and arbitrary µp. However, we stress
that the theory presented in the main body of this pa-
per is particular to non-magnetic media; we assume that
µp = µ0 in all the layers p.

The reflection coefficients are given as follows:

R11
n (h) =

(−1)

dn32

[
a

H′

3
J2

nµ3
a

J′

3
J2

nε3
+ bH3J2

n bJ3J2

n

]

+

(
2ω

πa2

)2

η2
3η

2
2ε3

T 11
n

Nn
, (A1)

R12
n (h) =

1

dn32

[
a

H′

3
J2

nµ3
bJ3J2

n − a
J′

3
J2

nµ3
bH3J2

n

]

+

(
2ω

πa2

)2

η2
3η

2
2µ3

Tn

Nn
, (A2)



8

where

T 11
n = dn32αn − tn21βn , (A3)

Tn = dn32γn − tn21δn , (A4)

and

Nn = (dn32)
2

[
dn32dn21 + tn21tn32

− (a11b11 − 2
ε2
µ2
a12b12 + a22b22)

]
. (A5)

Moreover, we have

αn = −(a
H′

3
J2

nµ3
)2ε2b11 + (bH3J2

n )2µ2b22

−2ε2b12a
H′

3
J2

nµ3
bH3J2

n , (A6)

βn = −(a
H′

3
J2

nµ3
)2ε2a22 + (bH3J2

n )2µ2a11

+2ε2a12a
H′

3
J2

nµ3
bH3J2

n , (A7)

γn = −aH′

3
J2

nµ3
b
H′

3
J2

n ε3b11 − a
H′

3
J2

nε3
bH3J2

n µ2b22

+ε2b12[a
H′

3
J2

nµ3
a

H′

3
J2

nε3
− (bH3J2

n )2] , (A8)

δn = −aH′

3
J2

nµ3
bH3J2

nε a22 − a
H′

3
J2

nε3
bH3J2

n µ2a11

−ε2a12[a
H′

3
J2

nµ3
a

H′

3
J2

nε3
− (bH3J2

n )2] , (A9)

and

a11 = a
H′

3
J2

nµ3
a

H′

3
H2

nε3
+ bH3J2

n bH3H2

n , (A10)

a12 = a
H′

3
J2

nµ3
bH3H2

n − a
H′

3
H2

nµ3
bH3J2

n

= − 2ω

πa2
η2
3

hn

a2
µ2(Hn3)

2
(
k2
2 − k2

3

)
, (A11)

b11 = a
H′

2
J1

nµ2
a

J′

2
J1

nε2
+ bH2J1

n bJ2J1

n , (A12)

b12 = a
H′

2
J1

nµ2
bJ2J1

n − a
J′

2
J1

nµ2
bH2J1

n

= − 2ω

πa1
η2
1

hn

a1
µ2(Jn1)

2
(
k2
1 − k2

2

)
. (A13)

The function a21, a22, and b21, b22 are obtained from a12,
a11, and b12, b11, respectively, by replacing µp ↔ −εp.

In the last step in Eqs. (A11) and (A13) we have used
the Wronskian determinant between Bessel and Hankel
functions. Finally, we have

tn21 = a
J′

2
J1

nµ2
a

J′

2
J1

nε2
+ (bJ2J1

n )2, (A14)

tn32 = a
H′

3
H2

nε3
a

H′

3
H2

nµ3
+ (bH3H2

n )2 , (A15)

dn21 = a
H′

2
J1

nµ2
a

H′

2
J1

nε2
+

(
bH2J1

n

)2
, (A16)

dn32 = a
H′

3
J2

nµ3
a

H′

3
J2

nε3
+

(
bH3J2

n

)2
, (A17)

and

a
H′

2
J1

nµ2
= iωη2η1 (µ2η1H

′
n2Jn1 − µ1η2Hn2J

′
n1) ,(A18)

a
J′

2
J1

nµ2
= iωη2η1 (µ2η1J

′
n2Jn1 − µ1η2Jn2J

′
n1) ,(A19)

a
H′

2
J1

nε2
= iωη2η1 (ε2η1H

′
n2Jn1 − ε1η2Hn2J

′
n1) ,(A20)

a
J′

2
J1

nε2
= iωη2η1 (ε2η1J

′
n2Jn1 − ε1η2Jn2J

′
n1) , (A21)

bH2J1

n =
hn

a1
Hn2Jn1

(
k2
1 − k2

2

)
. (A22)

Whenever the combination Z2 and Z1 is involved in the
superscript, the radius a1 is implicit in the cylindrical
functions. For example, in Eqs. (A18)–(A22) we have

Zn1 ≡ Zn(η1a1) , Zn2 ≡ Zn(η2a1) , (A23)

Z ′
n1 ≡ dZn(η1a1)

d(η1a1)
, Z ′

n2 ≡ dZn(η2a1)

d(η2a1)
. (A24)

The functions a
H′

3
J2

nµ3
, a

J′

3
J2

nµ3
, a

H′

3
J2

nε3
, a

H′

3
H2

nε3
, a

J′

3
J2

nε3
, bH3J2

n ,
and bH3H2

n are defined analogously, where we understand
that the radius a2 is implicit in all those functions. Of
course, for the special case µp = 1 for all layers p, these
reflection coefficients simplify.

The reflection coefficients R21
n (h) and R22

n (h) can be
obtained from R12

n (h) and R11
n (h), respectively, by re-

placing µp ↔ −εp. Note that the scattering coefficients
R11

n (h) as well as R22
n (h) are dimensionless. However, the

coefficients R12
n (h) and R21

n (h) are not, but the particular
combinations R12

n (h)(−ωε3/k3) = R21
n (h)(ωµ3/k3) are.
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