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We comment on Tabish Qureshi, ”Understanding Popper’s experiment,” AJP 73, 541 (June,
2005), in particular on the implications of its Section IV. We show, in the situation envisioned by
Popper, that analysis solely with conventional non-relativistic quantum mechanics suffices to exclude
the possibility of superluminal communication.

I. INTRODUCTION.

In a recent AJP paper1 (hereinafter referred to simply as “Q.”) Tabish Qureshi has presented an analysis of an
experiment proposed by Karl Popper to test the standard interpretation of quantum theory. In this Introduction
we describe Popper’s experiment and–because we believe Qureshi’s analysis could leave the readers of this journal
with some misconceptions–comment on Q. In Section II we show that in the situation envisioned by Popper even
conventional solely non-relativistic quantum mechanics suffices to exclude the possibility of superluminal (faster than
light speed) communication. Some brief closing remarks are presented in Section III.

Popper and Qureshi (see Q. Fig. 1) consider a source S emitting non-interacting pairs of non-identical particles 1
and 2 moving predominantly along the x direction (horizontal), but with some small components of momentum along
the y direction (vertical) and with zero components along the z direction (perpendicular to x and y); the experimental
situation pictured in Q. Fig. 1 is to be visualized as two dimensional, therefore, lying in the x, y plane only. The
total momentum of each pair is zero; also, any distribution in the components of momentum along the x direction is
inconsequential, so that we are concerned solely with the momenta p1 = −p2 of particles 1,2 along the y direction; We
assume, as Qureshi does in effect, that: (i) the source, at x = 0, emits a negligible number of particles with vertical
momenta outside the range |p1| ≤ Pm; (ii) Pm > 0 is much larger than any Heisenberg Uncertainty Principle momenta
realistically required to limit the spread of the beam along y in the region between A and B (see Q. Fig. 1); (iii) the
beam of particles 1, moving to the left, encounters at x = −X a screen with a narrow slit centered at y = 0 (slit A of
Q. Fig. 1); and (iv) this slit introduces a momentum spread along y that is much larger than Pm, with the result that
after passing through slit A the particle 1 beam spreads much more broadly along y than it did before encountering
slit A. The question discussed by Popper and Qureshi is: Does conventional quantum mechanics (what Qureshi calls
the ”Copenhagen interpretation”) predict that the particle 2 beam, moving to the right but not encountering a slit,
also will be spread much more broadly along y at horizontal distances x >X, by virtue of the entanglement between
particles 1 and 2 embodied in the requirement that when emitted p1 = −p2?

The unequivocal answer to this question, without the need to do any calculating is ”No”. Indeed the observable
effects of the beam on the screen behind B (e.g., darkening as a function of y) must in every respect be completely
independent of the size of the slit encountered at A. Otherwise the observer at A (conventionally named Alice)
could essentially instantaneously transmit messages to her counterpart observer (conventionally named Bob) viewing
the screen behind B, now placed at a very long distance x >>X ; in particular, if what Bob observes can depend
on the size of the slit Alice, using a code on which she and Bob had previously agreed, can send Bob a message
simply by widening and narrowing slit A. Such superluminal (faster than light speed) communication of information
is impossible.2 Furthermore as Peres3 has emphasized, conventional quantum mechanics implies that it is impossible
for Alice, by solely local operations, to transmit any information whatsoever to Bob. Alice’s control of the slit size
at A, without performing any operations whatsoever at any points between A and the screen behind B, is a ”local
operation” by definition.

Unfortunately Section IV of Q. reasonably can be read to imply that Alice, by detecting the passage of particles
1 through slit A as she controls the width of the slit, can affect the spread of the beam on the screen behind B (see
in particular the text immediately following Eq. (13) of Q.). Qureshi has assured us4 that this reading is not his
intention; rather, his section IV is supposed to be concerned with coincidence measurements, on particle 1 at slit
A and on particle 2 at the screen behind B, performed on a pair of particles that originally were simultaneously
emitted from the source S. In fact Qureshi, in an analysis5 of Popper’s experiment written only a few months before
Q. was submitted, explicitly states that in the absence of such coincidence measurements the observable effects of
the particle 2 beam on the screen behind B will be independent of the width of slit A. The clarifications, in this
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paragraph concerning the implications of Section IV of Q., and in the preceding paragraph concerning the predictions
of conventional quantum mechanics respecting Popper’s experiment, are among our reasons for writing this paper.

II. QUANTUM MECHANICAL ANALYSIS.

We believe it will be useful to present a simple easily grasped (though admittedly non-rigorous) derivation demon-
strating that application of conventional quantum mechanics to Popper’s experiment predicts the observable effects
of the beam on the screen behind B must be completely independent of the size of the slit encountered at A, or
indeed of any other local operations at A; thus, in Popper’s experiment at least, local operations cannot be employed
to transmit information. No such derivation is to be found in Qureshi’s earlier paper,5 nor in any other source of
which we are aware. It is important to note that manipulations of measurement equipment at A, e.g., switching on
electromagnetic fields in the vicinity of A, are included in the ”local” operations to which our derivation pertains
(see Subsections II.A and II.B), as are the performances of actual measurements at A (see Subsection II.C). In our
derivation, however, actual measurement performances, which collapse the wave function (Subsection II.C), require a
different treatment than do all other local operations, which affect the wave function via force terms generated in the
Schrodinger equation (Subsections II.A and II.B). Overall our derivation is confined to local operations in Popper’s
experiment, although the analysis in Subsection II.B does have wider application as will be seen. More general proofs,
not restricted to Popper’s experiment, that information cannot be transmitted by local operations can be found in
the literature (cf., e.g., Peres2 or Bruss6), but are difficult for non-experts.

It may seem surprising that a theorem of this nature can be established in non-relativistic quantum mechanics. One
might think that a proper relativistic theory would be required to show the impossibility of superluminal communi-
cation. What we show is that in Popper’s experiment ”ordinary” quantum mechanics precludes any local operations
on particles 1 from changing any probability distributions in the entire beam of particles 2, no matter how entangled
the particles are. This showing prevents information about the manipulations of slit A, or about measurements pe-
formed by Alice, from being transmitted to Bob via the beams at any speed, whether superluminally or relativistically
allowed.

A. Freely Moving Particles.

For any given pair of particles 1 and 2 which simultaneously leave the source S, the unnormalized wave function
expressing the aforesaid entanglement between them at the instant they leave the source is

Ψ(y1, y2) =

∫ ∞

−∞

dKW (K)e−iKy1eiKy2 , (1)

wherein: the plane waves have momenta p2 = - p1 = h̄K; W (K) describes the particle momentum distribution along
the y direction; |W (K)|2 is negligible for |h̄K| ≥ Pm; and the initial presumably random phase eiφ(K) multiplying each
plane wave pair e−iKy1eiKy2 has been absorbed in W (K). Because every entangled particle pair moves independently
of every other such pair, the time evolution of this Ψ(y1, y2) predicts the probability distribution of all the particle
2 trajectories toward the screen behind B (see Q. Fig. 1) even though this Ψ depends on the coordinates of only a
single pair of particles. Unhappily Ψ given by Eq. (1) is not normalizable. Instead

Ψ†Ψ =

∫

dy1dy2

∫

dKW ∗(K)eiKy1e−iKy2

∫

dK ′W (K ′)e−iK′y1eiK′y2

= (2π)2
∫

dKdK ′W ∗(K)W (K ′)[δ(K − K ′)]2 = (2π)2δ(0)

∫

dK|W (K)|2, (2)

where: all the integrals in Eq. (2) [and all integrals below] run from -∞ to ∞; herein and below the dagger † denotes
the adjoint; and, as is customary, δ(K) denotes the Dirac delta function of K. If W (K) itself is normalized so that
∫

dK|W (K)|2 = 1, |W (K)|2dK legitimately can be interpreted as the probability that, when the source emits a
particle pair, the wave number of particle 2 will lie between K and K +dK (still concentrating solely on motion along
the y direction, of course); henceforth we will assume that W (K) has been so normalized. The singularity on the right
side of Eq. (2) can be avoided, therewith making Ψ normalizable, by confining the system vertically to the region
between the two distant horizontal planes y = ±L, at which planes the momentum eigenfunctions in the expansion
of Ψ are required to satisfy periodic (or other suitable) boundary conditions. This procedure replaces the singular
factor (2π)2δ(0) in Eq. (2) by a well behaved factor.
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Introducing such boundary conditions, however, with the concomitant requirement that integrals over all wave
numbers be replaced by sums over the allowed values of those wave numbers, leads to equations, e.g., the analogs of
Eqs. (1) and (2), which tend to obfuscate the transparency of our analysis. We have decided not to impose boundary
conditions, therefore, believing it will be obvious that none of the inferences we draw from our analysis are obviated
either by our employment of the unnormalized Ψ of Eq. (1) or by our retention of singular delta funtion factors as
in Eq. (2). One might think this unnormalizability can be simply dealt with by appending a factor exp[−γ(y2

1 + y2
2)]

to the right side of Eq. (1), where γ is a small positive constant. But the inclusion of this factor means the initial
wave function is not surely describing particle pairs leaving the source S with equal and opposite momenta; for such
a source the dependence on y1, y2 of the initial wave function must be through the difference y1 − y2 only, as is
evident from Eq. (1).7 Once W (K) has been normalized as described in the preceding paragraph, Ψ(y1, y2) can be

formally ”normalized” by appending the singular factor [(2π)
√

δ(0)]−1 to the right side of Eq. (1). We will denote
this ”normalized” Ψ by Ψn, and will employ the subscript n to denote quantities calculated using Ψn.

The unit basis vectors w(y, k) in wave number space (which by not requiring the repeated inclusion of h̄ is more

convenient than momentum space), satisfying
∫

dkw∗(y, k)w(y′, k) = δ(y − y′), are w(y, k) = (1/
√

2π)eiky . Thus the
components Φ(k1, k2) of Ψ in wave number space are

Φ(k1, k2) = (1/2π)

∫

dy1dy2e
−ik1y1e−ik2y2Ψ(y1, y2) = 2π

∫

dKW (K)δ(K + k1)δ(K − k2) = 2πW (k2)δ(k1 + k2). (3)

Then at the source the number of particles 2 with wave numbers between k2 and k2 + dk2 must be proportional to
D(k2)dk2, where the particle 2 wave number distribution function

D(k2) =

∫

dk1|Φ(k1, k2)|2 = (2π)2
∫

dk1|W (k2)|2[δ(k1 + k2)]
2 = (2π)2δ(0)|W (k2)|2, (4)

a result whose total independence of our initial random phases eiφ(K) and proportionality to the probability |W (k2)|2
supports the validity of our analysis. Eqs. (2)-(4) imply that

Φ†Φ =

∫

dk1dk2|Φ(k1, k2)|2 =

∫

dk2D(k2) = (2π)2δ(0)

∫

dk2|W (k2)|2 = Ψ†Ψ, (5)

as consistency of the analysis requires. It is readily seen that when Ψ is replaced by Ψn in Eq. (3), and the
corresponding Φn is employed in Eq. (4) to compute Dn, the factor (2π)2δ(0) disappears from the right side of Eq.
(4), yielding Dn(k2) = |W (k2)|2. Thus Dn(k2)dk2 is interpretable as the probability at the source of finding particle
2 with wave number between k2 and k + dk2, consistent with the interpretation that ordinarily would be afforded a
calculation of the particle 2 wave number distribution function starting from a properly normalized wave function.
This additional consistency additionally supports our belief, which we will not argue any further, that the inferences
we draw from our analysis in this Subsection are valid although we use unnormalizable and singular functions.

Because the particles are assumed to move freely (without external influences of any kind) in the space betwen A
and B (see Q. Fig. 1), until particles 1 reach A the number of their paired particles 2 with wave numbers between
k2 and k2 + dk2 surely continues to be proportional to D(k2)dk2. This obvious result can be derived formally by
recognizing that as long as particles 1 and 2 are moving freely their motions can be thought to be described by the
Schrodinger equation ih̄∂Ψ/∂t = HΨ, whose formal solution when H is time-independent is8 Ψ(t) = e−iHt/h̄Ψ(0).
In the present free particles 1,2 case H is time-independent and = p2

1/2m1+ p2
2/2m2 ≡ H1 + H2. Then, since H

does not involve K and H1,H2 act respectively on y1, y2 only,

Ψ(t) ≡ Ψ(y1, y2; t) = e−iHt/h̄Ψ(0) =

∫

dKW (K)[e−iH1t/h̄e−iKy1 ][e−iH2t/h̄eiKy2 ]

=

∫

dKW (K)[e−ih̄K
2t/2m1e−iKy1 ][e−ih̄K

2t/2m2eiKy2 ] =

∫

dKW (K; t)e−iKy1eiKy2 , (6)

where Ψ(0) is Ψ(y1, y2) from Eq. (1) and W (K; t) = e−ih̄K
2t/2µW (K) with µ = m1m2/(m1 + m2). The right side

of Eq. (6) has the same form as the right side of Eq. (1) except that W (K; t) has replaced W (K); the components
Φ(t) ≡ Φ(k1, k2; t) of the wave function in momentum space are defined as was Φ(0) ≡ Φ(k1, k2) in Eq. (3) except
that Ψ(t) replaces Ψ(0); and D(k2; t), the particle 2 wave number distribution function at time t, is defined by Eq.
(4) except that Φ(t) replaces Φ(0). It follows that D(k2; t) equals the right side of Eq. (3), provided W (k2; t) replaces
W (k2). Therefore, since |W (k2; t)|2 = |W (k2)|2, it has been shown that D(k2; t) = D(k2), i.e., it has been shown
(as just asserted) that as long as the particles can be assumed to move freely the number of particles 2 with wave
numbers between k2 and k2 + dk2 continues to be proportional to D(k2)dk2. Moreover as Peres9 has proved, when
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the individual particles are represented by wave packets, as they should be, the paired particles 1 and 2 emitted
with opposite momenta do move in opposite directions along the same straight line. Consequently, remembering the
paired particles are emitted with opposite momenta along x as well as along y, until any burst of particles 1 reaches
A the distribution function D(k2) of Eq. (4) determines the distribution–as a function of y–of any darkening or other
observable effects produced by the corresponding burst of particles 2 on any screen intercepting the particle 2 beam.

B. Motion Under Forces.

Now suppose that, as a consequence of some local operation at A other than the performance of an actual measure-
ment, the particles 1 no longer move freely once they reach the vicinity of A. Then the Hamiltonian H governing the
particle motions still can be written in the form H = H1+ p2

2/2m2, but H1 (though of course still independent of y2

since the operation is local) now differs from p2
1/2m1 by terms depending on the particular local operation adopted.

If we justifiably are to visualize particles 1 as moving freely until they reach the vicinity of A, these local operation
terms should be negligible unless x is very close to the location x = −X of A (as we have been assuming to this
juncture in this paper). But, once no longer negligible, these local operation terms in H1 may be expected to mix
particle momenta along x and y, as well as to deflect particles 1 out of the x, y plane in which we have assumed
they move; certainly this is what is likely to occur if the local operation involves electromagnetic forces. It follows
that for the purpose of determining the time dependence of the particle motions when particles 1 are subject to local
operations in the vicinity of A, Eq. (1)–with its neglect of all particles 1,2 coordinates other than y1 and y2–generally
is no longer useful. Instead it is necessary to start from

Ψ(0) ≡ Ψ(r1, r2) =

∫

dKW (K)e−iK·r1eiK·r2 , (7)

wherein dK = dKxdKydKz and the notation should otherwise be obvious.
We return to Eq. (7) below. For the moment, however, let us assume that the local operation permits us to

concentrate solely on motions along y as we have been doing, and as would be the case if the local operation were the
interruption of the particle 1 beam by a narrow horizontal slit at A. In this event Eq. (6), giving the time dependence
of the wave function in the purely free particle case, legitimately can be replaced by

Ψ(t) ≡ Ψ(y1, y2; t) = e−iHt/h̄Ψ(0) =

∫

dKW (K)u(y1, K; t)[e−ih̄K2t/2m2eiKy2 ], (8)

where we are defining u(y1, K; t) as the y1 component of the function e−iH1t/h̄e−iKy1 , i.e.,

u(y1, K; t) ≡ [e−iH1t/h̄e−iKy1 ]y1
=

∫

dyU(y1, y; t)e−iKy, (9)

with U the unitary operator e−iH1t/h̄. Eqs. (8) and (9) still assume the Hamiltonian operator H1 is time-independent.
When H1 is time-dependent, however, as for instance it would be if Alice were to change the slit width at A while the
beam of particles 1 is impinging on A, it merely is necessary8 to replace H1t in e−iH1t/h̄ by the appropriately time

ordered integral
∫ t

0
dt′H1(t

′). The key point is that the right side of Eq. (9) remains a valid formula for u(y1, K; t) in
Eq. (8), with U still a unitary operator. Thus whatever the local operations, time-independent or time-dependent,
the components Φ(t) ≡ Φ(k1, k2, t) of the wave function in momentum space now are, recalling Eq. (3) and using Eq.
(9),

Φ(t) = (1/2π)

∫

dy1dy2e
−ik1y1e−ik2y2Ψ(t) = W (k2)

−ih̄k2

2
t/2m2

∫

dy1e
−ik1y1u(y1, k2; t). (10)

Consequently, recalling Eq. (4), once particles 1 have reached A the number of particles 2 with wave numbers
between k2 and k2 +dk2 becomes proportional to D(k2; t)dk2, where the particle 2 wave number distribution function
now is

D(k2; t) =

∫

dk1|Φ(t)|2 = |W (k2)|2
∫

dk1

∫

dy1e
−ik1y1u(y1, k2; t)

∫

dy′
1e

ik1y′

1u∗(y′
1, k2; t)

= (2π)|W (k2)|2
∫

dy1

∫

dy′
1δ(y1 − y′

1)u(y1, k2)u
∗(y′

1, k2) = (2π)|W (k2)|2
∫

dy1|u(y1, k2, t)|2. (11)

In Eq. (11), furthermore, remembering Eq. (9) and the fact that U is unitary,
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∫

dy1|u(y1, k2, t)|2 = u(t)†u(t) = [Ue−ik2y1 ]†Ue−ik2y1 = [e−ik2y1 ]†U†Ue−ik2y1 =

∫

dy1|e−ik2y1 |2 = (2π)δ(0), (12)

where we have employed standard matrix manipulations. Eqs. (11) and (12), taken together, make D(k2, t) identical
with D(k2) from Eq. (4). It again is readily seen that if the normalized Ψn(0) replaces Ψ(0) in Eq. (8), the resultant
Dn(k2, t) = |W (k2)|2 = Dn(k2). In other words despite the local operations at A that we have been discussing, the
observable effects of the particle 2 beam on the screen behind B remain precisely what they would have been had
the particle 1 beam moved totally freely after leaving source S. In short, such local operations do not permit Alice to
send messages to Bob

The preceding key result that D(k2, t) = D(k2) has been proved only for those special local operations which do
not affect the motions of particles 1 along the x or z directions; for more general local operations it is necessary to
start from Eq. (7) rather than Eq. (1), as we have explained. But it now is readily seen that the above derivation of
D(k2, t) = D(k2) starting from Eq. (1) is directly parallelled by a derivation, starting from Eq. (7), which–whether
or not the paticles 1 move freely–yields D(k2, t) = D(k2), where D(k2) is the particle 2 wave number distribution
function at the source S for arbitrary wave number vectors k2. Of course, when starting from the unnormalizable three
dimensional Ψ(r1, r2) of Eq. (7), the equations corresponding to Eqs. (2)-(6) and (8)-(12) contain three dimensional
delta functions rather than one dimensional delta functions. For instance the equation corresponding to Eq. (4) is

D(k2) = (2π)6δ(0)|W (k2)|2, (13)

where δ(K) = δ(Kx)δ(Ky)δ(Kz) is the three-dimensional Dirac delta function. Note in particular that D(k2) is
proportional to |W (k2)|2, just as D(k2) is proportional to |W (k2)|2, so that regarding D(k2)dk as proportional to the
number of particles 2 at the source with wave number vectors lying in the range k2 to k2 + dk2 is no less reasonable
than was our corresponding interpretion of D(k2)dk2. As when starting from the one-dimensional Eq. (1), the three-
dimensional Ψ of Eq. (7) can be made normalizable by confining the system to the interior of the volume formed
by the planes x = ±L, y = ±L, z = ±L and introducing suitable boundary conditions; in this fashion the singular
factor in Eq. (13) can be avoided, at the expense of having to replace integrals over all wave numbers with sums over
allowed wave numbers only.

C. Measurements by Alice.

To this point, however, our derivation has not pertained to local operations at A involving the performance of actual
measurements. To see that measurements at A also cannot enable Alice to send messages to Bob, let us examine the
consequences of a decision by Alice to make wave number measurements of her own on the particle 1 beam, before
Bob has a chance to make his measurements. We want to see whether these measurements of Alice’s can alter our
previous conclusions, e.g., our conclusion in Subsection II.A that D(k2) of Eq. (4) determines the distribution of wave
numbers k2 Bob observes irrespective of the local operations–of the sort, e.g., considered in Subsection II.B–performed
on particles 1. For this purpose it is desirable to examine first an experimental situation which is not complicated by
the facts: (i) that Ψ of Eqs. (1) or (3) is unnormalizable; and (ii) that the unit basis vectors w(y, k) in wave number
space [defined immediately preceding Eq. (3)] lie in the continuum. So suppose that: (i) we again have entangled
pairs of particles 1,2, with Alice and Bob capable respectively of making local measurement observations on particles
1 at A and on particles 2 at B; but (ii) at some instant the wave function describing the state of a representative
entangled pair 1,2 now is

Ψ =
∑

i,j

aijαiβj . (14)

In Eq. (14): the αi are an orthonormal set of eigenstates for the measurement operation Alice plans to make; the
βj are similarly defined for Bob; and Ψ is normalized, implying the numbers aij satisfy

∑

i,j |aij |2 = 1. Then at this

instant, for any given aij , the quantity |aij |2 customarily is regarded as the probability that measurements on the
particle pair will find particle 1 in the eigenstate αi and particle 2 in the eigenstate βj . Correspondingly, summing
|aij |2 over all possible states i in which the particle 1 paired with this particle 2 might have been found, one obtains
the actual probability ρ2j of finding particle 2 in the eigenstate βj , namely ρ2j =

∑

i |aij |2. If many independently
moving entangled pairs 1,2 are being observed, the numbers of particles 2 in the various different states βj actually
observed by Bob cannot but be proportional to their respective probabilities ρ2j .

The preceding paragraph has not specified whether or not Alice actually has performed measurement observations on
particle 1. Since nothing has been said about any collapses of Ψ induced by Alice’s measurements, we might infer that
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the preceding paragraph presumed Alice had not made any actual measurements before Bob made his measurements.
The important point, which we are about to demonstrate, is that whether or not Alice did her measuring before Bob
is irrelevant to the validity of the above interpretations of |aij |2 and ρ2j . In particular suppose Alice, before Bob makes
any measurements on particle 2, observes that the paired particle 1 is in the state αi. According to the conventional
understanding of measurements in quantum mechanics, this measurement immediately collapses Ψ of Eq. (14) into
the new wave function10

Ψci = αi{[
∑

k

|aik|2]−1/2}
∑

j

aijβj . (15)

Evidently, except for the factor [
∑

k |aik|2]−1/2, Ψci has plucked from Ψ of Eq. (14) all the terms containing αi and
only those terms, as one expects for the collapsed wave function after observing particle 1 in the state αi. The factor
[
∑

k |aik|2]−1/2, which is consistent with the so-called Born rule,10 is required in order that Ψci be normalized, i.e.,

in order that Ψ†
ciΨci = 1, as any wave function describing an actual physical situation should be. According to Eq.

(14) the probability ρ2j/i of observing particle 2 in the state βj , knowing that particle 1 has been observed in the

state αi, is ρ2j/i = |aij |2[
∑

k |aik|2]−1. But, consistent with the preceding paragraph, the probability ρ1i that Alice

has observed particle 1 in the state αi must be ρ1i =
∑

j |aij |2.
Thus the probability of Alice first observing particle 1 in the state αi and Bob only then observing the paired

particle 2 in the state βj must be ρ1iρ2j/i = |aij |2, exactly the probability, quoted in the penultimate paragraph, for
finding particle 1 in the eigenstate αi and the paired particle 2 in the eigenstate βj without any specified temporal
order in making the measurements on the two particles. Correspondingly, since Alice had to find her particle 1 in some
αi, the actual probability that Bob will find the paired particle 2 in the state βj after Alice made her measurement
again will be the probability ρ2j =

∑

i |aij |2 obtained in the penultimate paragraph. We conclude that when many
independently moving entangled pairs are being observed (as in Popper’s experiment), the numbers of particles 2
in the various different states βj actually observed by Bob will be proportional to the same respective probabilities
ρ2j whether or not Bob has made his observations after measurements by Alice. Note that this conclusion does
not in any way depend on the nature of the states αi and βj , i.e., does not depend on the kinds of measurements
Alice (on particles 1 only) and Bob (on particles 2 only) have chosen to perform; it is assumed of course that the
measurements are performed independently, meaning that Bob receives no communications from Alice which could
enable him to modify his measurements depending on Alice’s measurement results. Therefore we have proved that
when the experimental situation involves many pairs of independently moving pairs of entangled particles 1,2, and
when the state of any representative entangled pair is described by the wave function Ψ of Eq. (14), Alice cannot
employ her local measurement observations on particles 1 at A to send messages to Bob at B, because the nature of
her measurements, and whether or not she performs them, will not in any way alter Bob’s observations of the particles
2 at B.

The proof in the preceding paragraph, which we henceforth will term the ”foregoing” proof, is quite generally valid
for particle pair systems described by Eq. (14), wherein Ψ is normalized and is defined by a discrete sum; for instance
the foregoing proof is valid for the very commonly discussed case of observations on a large number of similarly
entangled qubit pairs. Unfortunately, primarily because we have relied so importantly on our ability to interpret the
quantities ρ2j =

∑

i |aij |2 arising from Eq. (14) as probabilities, we have not been able to convincingly generalize the
foregoing proof to this paper’s analysis of Potter’s experiment, wherein the analogs of ρ2j are the singular D(k2) of
Eq. (4) [in the one-dimensional case starting from Eq. (1)] or the even more singular D(k2) of Eq. (13) [in the full
three-dimensional case starting from Eq. (7)]; the facts that Eqs. (1) or (7), and their respective succeeding Eqs. (4)
or (13), involve integrals rather than sums is a further complication. We argue as follows, however, now confining our
attention to the full three dimensional case starting from Eq. (7): We already have pointed out that, via the device
of confining the system to the interior of the volume formed by the planes x = ±L, y = ±L, z = ±L and imposing
suitable boundary conditions, our analysis of Potter’s experiment could have been made to start with a wave function
which was normalized and involved a discrete sum, which wave function analog of Ψ defined by Eq. (7) we will call
Ψd. The foregoing proof unquestionably applies to this alternative formulation of Potter’s experiment starting with
Ψd. Moreover it is reasonable that with arbitrarily large L it should be possible to represent the actual physics of
a spatially confined experiment like Potter’s with arbitrarily high precision, even though the allowed particle wave
numbers are limited to a discrete set; certainly physicists have not hesitated to use discretized wave expansions and
box normalization ever since the dawn of quantum mechanics.11 To put it differently, since the allowed discrete wave
numbers are very close to each other for large L and change as L changes, it is unreasonable to think our rigorous
proof–that Alice’s observations on particles 1 cannot affect Bob’s observations on particles 2 when the source emits
only allowed wave numbers for some particular specified L–does not carry over to all wave numbers. We conclude
that our foregoing proof applies to Potter’s experiment, whether Alice chooses to make measurements on particles 1
when they still are moving freely (as in Subsection II.A), or defers her measurements until particles 1 have reached
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the slit A (as in Subsection II.B).
It is noteworthy that our derivation clearly implies any measurement observations by Alice capable of collapsing

the wave function may decrease the range of k2 available to particles 2 on their way to the screen behind B, but surely
cannot increase this range.

III. CONCLUDING REMARKS.

The immediately preceding completes our demonstration that application of conventional quantum mechanics
to Popper’s experiment predicts the observable effects of the beam on the screen behind B must be completely
independent of the size of the slit encountered at A, or indeed of any other local operations at A. We recognize that
our derivation is not rigorous, but believe it captures, in a fashion accessible to non-experts, the essence of the physics
involved in Popper’s experiment when the particles involved are not photons. We acknowledge that our demonstration
is not convincing for a Popper’s experiment with pairs of photons, which do not obey the usual Schrodinger equation
and can be destroyed in the course of detection, a possibility our derivation does not contemplate. That for photons
it must be possible to establish (though not necessarily to prove simply) theorems similar to those derived in this
paper follows from our general remarks in the third paragraph of this paper.

Before closing we remark that the Schrodinger equation for freely moving particles impinging upon a slit screen
normally would be solved by imposing some appropriate boundary condition at the screen (not at the slit of course),
in which event the equation Ψ(t) = e−iHt/h̄Ψ(0) will not yield the correct solution if H is the usual free particle
Hamiltonian. This paper assumes the relevant physics of particles impinging on a screen can be adequately reproduced
via replacement of the boundary condition with suitable forces; since such forces must exist, because otherwise the
particles simply would penetrate the screen, we do not doubt the validity of our assumption, but believe we should
make it explicit. Note that merely postulating the existence of such forces describable by a Hamiltonian is sufficient
for our purpose; our proof in (Subsection II.B) that D(k2, t) = D(k2) depends only on the existence of an H (whose
details we need not know) which, when substituted for the free particle Hamiltonian, will yield a Ψ(t) = e−iHt/h̄Ψ(0)
that correctly predicts the motion of the particles 1 in the vicinity of the slit screen. Obviously a similar assumption
must be made for any other conceivable local operation at A that Alice might impose and which at first sight is
describable by a boundary condition, not by forces.

Finally we note that if |W (k2)|2 in Eq. (13) is zero for k2 = | k2| >Pm/h̄, no wave function collapsing measurements
on particles 1, or any other local operations on particles 1 for that matter, can result in any particles 2 arriving at
screen B along trajectories corresponding to k2 > Pm/h̄. From this feature ALONE we can conclude that in Popper’s
experiment inserting a narrow slit in the path of particles 1 will NOT cause an increased spread in the angular
trajectories of particles 2.
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