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Abstract

In this paper, starting from vortices we are finally lead to a treat-

ment of Fermions as Kerr-Newman type Black Holes wherein we iden-

tify the horizon at the particle’s Compton wavelength periphery. A

naked singularity is avoided and the singular processes inside the hori-

zon of the Black Hole are identified with Quantum Mechanical effects

within the Compton wavelength.

Inertial mass, gravitation, electromagnetism and even QCD type in-

teractions emerge from such a description including relative strengths

and also other features like the anomalous gyromagnetic ratio, the

discreteness of the charge, the reason why the electron’s field emerges

from Newman’s complex transformation in General Relativity, a ra-

tionale for the left handedness of neutrinos and the matter-antimatter

imbalance.

This model describes the most fundamental stable Fermions viz., the

electrons, neutrinos and approximately the quarks. It also harmo-

niously unifies the hydrodynamical, monopole and classical relativistic

perspectives.
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1 Introduction

Ordinary Quantum Mechanics works at distances much greater than the
Compton wavelength of elementary particles or roughly 10−12cm. In the
domain of Quantum Field Theory, particles are points, space-time is a con-
tinuum and special relativity holds, though very recently there has been a
school of thought (the spirit of Effective Field Theories) that Field Theory
itself is a low energy approximation. On the other hand in Quantum Gravity
we attempt to deal with phenomena at distances of the order of the Planck
length or 10−33cm, though there has as of now been no successful unification
of Quantum Mechanics and General Relativity.
In this preliminary communication, we consider an alternative viewpoint,
dealing with distances of the order of the Compton wavelengh. At this level
Quantum Mechanical phenomena like zitterbewegung and negative energies
and luminal velocities come in. Taking a route through relativistic vortices,
monopoles and classical considerations, we are lead to the model of lep-
tons (and also approximately quarks) as ”Quantum Mechanical Black Holes”
(QMBH in what follows), wherein features of Quantum Mechanics and Gen-
eral Relativity are inextricably inter-woven. At the same time, we can trace
the origin of inertial mass, gravitation, electromagnetism and even QCD type
interactions in such a picture.
In section 2 we invoke the DeBroglie-Bohm Hydrodynamical Formulation to
picture an elementary particle as a relativistic vortex from which it is pos-
sible to recover its mass and quantized spin. Taking the cue from here in
section 3 we argue that the inertial mass of an elementary particle is the
energy of binding of nonlocal amplitudes in the zitterbewegung Compton
wavelength region. In section 4 it is shown how the Dirac monopole theory
is really identical to the picture of a particle as a relativistic vortex. In sec-
tion 5 the zitterbewegung is examined in greater detail and it is argued that
the usual positive energy states we encounter in the physical universe are at
scales greater than the Compton wavelength. In section 6 it is shown how the
preceding Quantum Mechanical considerations can be equally well described
in classical terms, that is for a relativistic collection, or for a hydrodynam-
ical flow. In section 7 it is suggested that an electron, for example could
be described by the Kerr-Newman metric, while a full General Relativistic
rationale for such an identification is given in section 8. Finally in section 9
a number of comments are made.
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Ultimately there is a convergence of the various approaches and a harmonious
unified picture appears to emerge.

2 The Bohm Hydrodynamical Formulation

In the Bohm hydrodynamical formulation[1, 2], we start with the Schrodinger
equation

ıh̄
∂ψ

∂t
= −

h̄2

2m
∇2ψ + V ψ (1)

In (1), the substitution
ψ = ReıS (2)

where R and S are real functions of ~r and t leads to,

∂ρ

∂t
+ ~∇.(ρ~v) = 0 (3)

1

h̄

∂S

∂t
+

1

2m
(~∇S)2 +

V

h̄2
−

1

2m

∇2R

R
= 0 (4)

where ρ = R2, ~v = h̄
m
~∇S and Q ≡ − h̄2

2m
(∇2R/R).

Using the theory of fluid flow, it is well known that (3) and (4) lead to the
Bohm alternative formulation of quantum mechanics. In this theory there
is a hidden variable namely the definite value of position while the so called
Bohm potential Q can be non local, two features which do not find favour
with physicists.

Let us now consider the stationary solutions in the above formulation viz.
equation (4), in the absence of external fields. As is known, the non local
quantum potential is given by

Q = constant = E,

the energy of the system. Further the velocity field is solenoidal,

~∇.~v = 0 (5)

3



Remembering that S the phase is undefined up to a term which is a multiple
of π, we can now see from equation (5) that there is a circulation which is
given by (cf. ref.[1]).

Γ =
∫

c
~v.~dr = (h̄/m)

∫

c

~∇S.d~r = (h̄/m)
∮

dS =
πh̄n

m
, n = 1, 2, ... (6)

For reasons which will become clear below we consider the ultra relativistic
case, |~v| = c for all particles of the fluid. We now get from equation (6),

mΓ =
∫

c
m~v.~dr =

nh

2
, n = 1, 2, ... (7)

where, an integration over all elements ρ, is implied. Here n is the number of
nodes (or, in three dimensions, the end points of nodal lines). We can imme-
diately identify (7) with the quantum mechanical spin n

2
. Interestingly there

are 2 × n
2

+ 1 = n + 1 multiply connected regions, both in hydro-dynamics
and in the theory of spin.

It is also worth noting that in (7), if the radius of the vortex is taken to
be l, then l turns out to be the Compton wavelength, which thus appears as
a fundamental length. This will be commented upon later.

Further, considering for simplicity the vortex in (6) to be a thin ring of
radius l, we get

E =
∮

ρc2ds = mc2,

where ρ is the (line) density. Further from (7) we get

mc
∮

ds =
nh

2
,

whence, taking n = 1,

l =
h̄

2mc

The physical picture is now clear[3]. A particle can be pictured as a fluid
vortex which is steadily circulating along a ring (or in three dimensions,
a spherical shell) with radius equal to the Compton wavelength and with
velocity equal to that of light. Its total energy is given by, as seen above

Q = E = mc2 (8)
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and its angular momentum, which in quantum theory is quantized is given
by (7).

3 The Origin of Inertial Mass

We will now compare the above conclusions with the results of[4, 5]. Our
starting point is an equation deduced by Feynman[6] in a simple way,

ıh̄
∂C(x)

∂t
=

−h̄2

2m′
∂2C(x)

∂x2
(9)

where C(x) ≡ |ψ(x) > is the probability amplitude for the particle to be at
the point x at some given moment of time.
To deduce equation (9) we follow the development of[6] and define a complete
set of base states by the subscript ıandU(t2, t1) the time elapse operator that
denotes the passage of time between instants t1 and t2, t2 greater than t1.
We denote by, Cı(t) ≡< ı|ψ(t) >, the amplitude for the state |ψ(t) > to be
in the state |ı > at time t, and

< ı|U |j >≡ Uıj, Uıj(t + ∆t, t) ≡ δıj −
ı

h̄
Hıj(t)∆t.

We can now deduce from the super position of states principle that,

Cı(t+ ∆t) =
∑

j

[δıj −
ı

h̄
Hıj(t)∆t]Cj(t)

and finally, in the limit,

ıh̄
dCı(t)

dt
=

∑

j

Hıj(t)Cj(t) (10)

where the matrix Hıj(t) is identified with the Hamiltonian operator. (To
facilitate comparison we stick to the notation and development as given in[6].
Before proceeding to derive the Schrodinger equation, we apply equation (10)
to the simple case of a two state system (ı, j = 1, 2 respectively; (cf.ref.[6]).
This will provide a physical picture for the later work. For a two state system
we have

ıh̄
dC1

dt
= H11C1 +H12C2
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ıh̄
dC2

dt
= H21C1 +H22C2

leading to two stationary states of energies E − A and E + A, where E ≡
H11 = H22, A = H12 = H21. We can choose our zero of energy such that
E = 2A. Indeed as has been pointed out by Feynman, when this considera-
tion is applied to the hydrogen molecular ion, the fact that the electron has
amplitudes C1 and C2 of being with either of the hydrogen atoms, manifests
itself as an attractive force which binds the ion together, with an energy of
the order of magnitude A = H12.
To proceed, we consider in (10), the ı to be the space point xı and we denote
C(xn) ≡ Cn the probability amplitude for the particle to be at this space
point. Further let xn+1 −xn = b. Then considering only the point xn and its
neighbours xn±1, the equation (10) goes over into

ıh̄
∂C(xn)

∂t
= EC(xn) −AC(xn − b) − AC(xn + b) (11)

In the limit b→ 0, with our choice of the arbitrary zero of energy, (11) goes
over into equation (9) where we have now dropped the subscript distinguish-
ing the space point, and m′ = h̄2/2Ab2.
We now observe that while equation (9) resembles the free Schrodinger equa-
tion, as has been pointed out by Feynman, m′ is not really the inertial mass,
but an ”effective mass” that emerges from the probability amplitude for the
particle to be found at a neighbouring point. So (9) is not the Schrodinger
equation.
The Schrodinger equation can be obtained from (9) if it can be shown that
m′ can somehow be replaced by m. This is what we propose to do.
To start with let us suppose that the particle has no mass other than the
effective mass m′, so that we can treat equation (9) as the Schrodinger type
equation for such a particle which has only amplitude to be at neighbouring
points. Let us now suppose that the particle acquires non zero probability
amplitude to be present non locally at other than neighbouring points. We
can then no longer work with equations (11) and (9). We will have to use
the full equation (10) which explicitly exhibits this possibility. We rewrite
equation (10) as

ıh̄
dCı(t)

dt
= HııCı(t)+Hı,ı−1Cı−1(t)+Hı,ı+1Cı+1(t)+

∑

j

Hı,ı+j(t)Cj(t), (j = ±2,±3, )
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or as in the transition of equation (11) to equation (9),

ıh̄
∂C(x)

∂t
=

−h̄2

2m′
∂2C(x)

∂x2
+

∫

H(x, x′)C(x′)dx′ (12)

where we have replaced Hıj by H(x, x′) and the points xı are in the limit
taken for the time being to be a continuum. This is as in the well known case
of the non-local Schrodinger equation for a non-local potential[7] but for a
particle having only an effective mass.
The matrix H(x, x′) gives the probability amplitude for the particle at x to
be found at x′, that is,

H(x, x′) =< ψ(x′)|ψ(x) > (13)

where as is usual we write C(x) ≡ ψ(x)(≡ |ψ(x) >, the state of a particle at
the point x).
Usually the amplitude H(x, x′) is non-zero only for neighbouring points x
and x′, that is, H(x, x′) = f(x)δ(x− x′). But if H(x, x′) is not of this form,
then there is a non-zero amplitude for the particle to ”jump” to an other
than neighbouring point. In this case H(x, x′) may be described as a non
local amplitude. Indeed such non-local amplitudes are implicit in the Dirac
equation also and this will be commented on later.
We now give a quick derivation of how the inertial mass emerges from equa-
tion (12). The non local Schrodinger equation (12), given only the effective
mass m′, can be written, with the help of (13), as,

ıh̄
∂ψ

∂t
=

−h̄2

2m′
∂2ψ

∂x2
+

∫

ψ∗(x′)ψ(x)ψ(x′)U(x′)dx′, (14)

where,
i)U(x) = 1 for |x| < R,R arbitrarily large and also U(x) falls off rapidly as
|x| → ∞;U(x) has been introduced merely to ensure the convergence of the
integral; and
ii)H(x, x′) =< ψ(x′)ψ(x) >= ψ∗(x′)ψ(x).
(14) is an integro-differential equation of degree three.
The presence of the, what at first sight may seem troublesome, non-linear
and non-local term, viz., the last term on the right side of (14) will be satis-
factorily explained in the sequel.
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In (14),in the first approximation ψ(x) can be taken to be the solution of the
Schrodinger like equation (9), viz.,

ıh̄
∂ψ

∂t
=

−h̄2

2m′
∂2ψ

∂x2
(15)

In effect, we linearize (14), so that we get,

ıh̄
∂ψ

∂t
= [−

h̄2

2m′
∂2

∂x2
+m0]ψ (16)

where,

m0 =
∫

ψ∗(x′)ψ(x′)U(x′)dx′

In operator language, (16) becomes,

H̄ =
p2

2m′ +m0 (17)

where H̄ is the Hamiltonian operator, p the momentum operator and where,
what can now be anticipated as a rest mass like term m0, appears for a
particle assumed not to have any rest mass in the absence of the non-local
amplitude term in (14). Also we have replaced the Hamiltonian matrix H by
H̄ to stress that, to start with, in (12) and (14), the particle has no inertial
mass. To facilitate comparison with the usual theory, we next multiply both
sides of (17) by the constant m′

m
, where,

m = (m0m
′)

1

2/c,

c being the velocity of light. (The reason for the appearance of the velocity
of light, c can be seen below (cf.equation (19)) and the constant could be
absorbed into the state vector, whose direction is all that matters. We then
get,

Ĥ =
p2

2m
+mc2 (18)

The physical meaning of (18) is now clear. In an expansion of the classical
relativistic expression for energy,

E = (p2c2 +m2c4)1/2
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as is well known, if we keep terms up to the order (p/mc)2, we get,

E =
p2

2m
+mc2 (19)

We can now easily identify m in (18) with the rest mass on comparing this
equation with (19). (Interestingly it is not accidental that equation (18)
corresponds to the approximation (19) as will be seen below). If further, we
denote

H = Ĥ −mc2,

where H can be easily identified with the usual kinetic energy operator (or
energy operator in non-relativistic theory, remembering that we are consid-
ering a free particle only), (18) becomes

H =
p2

2m
(20)

In a strictly non relativistic context, where the rest energy of the particle
is not considered, the Hamiltonian is given by (20); otherwise, it is given
approximately by (18). We get from (20), the Schrodinger equation,

ıh̄
∂ψ

∂t
= −

h̄2

2m

∂2ψ

∂x2
(21)

All these considerations can be considered in a postulative development [5]
and also generalized in a simple way to three dimensions, but as there is no
new physical insight, the details are not given.
The physical origin of the rest mass is clear from equation (18): in the two
state hydrogen molecular ion case considered earlier, it was the amplitude for
the single electron to be with one hydrogen atom or the other which showed
up as a binding energy. Similarly the amplitude of a particle to be at x or x′

viz. the second term on the right side of equation (14) manifests itself as an
(attractive) energy, which may be called the mass energy of the particle or
the self energy or the energy of self interaction. This can be seen to be the
particle’s inertial mass.
We now come to the non local term in equation (14), the term which gives
the inertial mass. Non locality implies superluminal velocities and the break-
down of causality which is not permissible in general. However without any
contradiction to the theory it is well known that Quantum Mechanics allows
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such non locality, owing to the uncertainity principle [8], within the Compton
wavelength of a particle. So there is no contradiction if the non local integral
in (14) is taken within the region of the particle’s Compton wavelength, that
is, the inertial mass is a result of non local processes within the Compton
wavelength of the particle.
Indeed the usual Dirac equation also has a non local character: The operator
c~α.~p+βmc2 is equivalent to and replaces the non-local square-root operator,
(−h̄2∇2 + m2c4)1/2. Here also, the non-local effects in the form of nega-
tive energies are encountered - again within the Compton wavelength region
(cf.ref.[9]).
In the light of the preceding considerations, we can derive the Schrodinger
equation from an alternative angle: It appears that the ”point” particle is
really spread over the non-locality region ∼ b̄ = h̄

mc
, the Compton wave-

length. Further, the energy of the particle i.e., the energy tied up within this
region viz., 2A is the inertial mass energy mc2. We could now, speak of the
amplitude for the particle at x to be found (locally) at a neighbouring point
x + b, except that in the limit, b → b̄ (and not as earlier 0). The effective
mass m′ in equation (9) is then given by,

m′ =
h̄

2Ab2
= m,

that is the mass itself!
So, equation (9) can be interpreted as the Schrodinger equation.
It is worth re-emphasizing that it is the force of binding of non-local posi-
tions within the Compton wavelength, rather like the Hydrogen molecular
ion binding, that manifests itself as inertial mass.
Finally we briefly comment on the appearance of the extra mass energy term
in equations like (12), (14), (17), (18) or (19)[5, 10, 11].
The Schrodinger equation is really the limiting case of the Dirac equation in
which process an inessential phase factor is dropped. Another way of look-
ing at this is that the constant potential moc

2 does not affect the dynamics.
That is the reason why the Schrodinger equation is not Galilean invariant,
as a non relativistic theory should be, and infact exhibits the Sagnac effect,
which a strictly Galilean invariant theory should not[12].

The convergence of the above formulation and the Bohm hydrodynamical
formulation is evident once we restrict ourselves to the Compton wavelength
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and luminal velocities. The particle is now a relativisitc fluid vortex circu-
lating along a ring of radius equal to the Compton wavelength. The Q given
by (8) is the energy of this system or particle and corresponds to the inertial
mass term given by the integral in (14) or equivalently the constant potential
term in (19).

4 Monopoles

It is well known that there is a close connection between the hydrodynamic
theory discussed in Section 2 and Dirac’s theory of monopoles [13]. The
starting point in this latter case is precisely the decomposition of the wave
function (2), but the focus is on the phase function S which need not be
integrable: exactly as in the case of the vortex above, there can be nodal
singularities. Infact the S in this theory defines the function ~K of Dirac,
exactly as it does the momentum vector of section 2. But this time ( ~K,K0)
is identified with the electromagnetic potential and an integral like (7) then
consists of, in addition to the term nh̄

2
the electromagnetic flux, again n

being the number of nodal lines with end points inside the vortex or region
of integration. Thus the well known equation of the magnetic monopole viz.
µ = 1

2
nh̄ c

e
, on identifying

~K ≡
e

h̄c
~H (22)

( ~H being the magnetic field) with the momentum of section 2 gives back
equation (7) for quantized spin. We will come back to this point later.

5 Zitterbewegung and the Compton Wave-

length

We will now examine briefly the phenomenon of zitterbewegung in the con-
text of the Compton wavelength. In the usual theory of the Dirac equation
[14], it is well known that the eigen values of the velocity operator c~αare± c,
the velocity of light while the position operator is non Hermitian: It con-
sists of a real part which is the usual position and a rapidly oscillating (or
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zitterbewegung) imaginary part,

x = (c2p1H
−1t) +

ı

2
ch̄(α1 − cp1H

−1)H−1 (23)

Both these puzzling facts are reconciled by the fact that our measurements
are really averaged over time intervals of the order h̄/mc2 and correspond-
ingly over the space intervals of the order of h̄/mc, the Compton wavelength.
In this case the imaginary part in (23) disappears (cf. ref.[14]). Hermiticity
and Physics begins after such an averaging necessitated by our gross mea-
surements.

One could say that (23) applies in a non local region bounded by the
Compton wavelength as we saw in section 2. Within the region, we have to
contend with unphysical phenomena like superluminal velocities and nega-
tive energies and in general non Hermitian operators. Outside the Compton
wavelength, that is on averaging over space time intervals of this order, we
are back in usual Physics.

We consider now, for simplicity, the free particle Dirac equation. The
solutions are of the type,

ψ = ψA + ψS (24)

where

ψA = e
ı
h̄

Et











0
0
1
0











or e
ı
h̄

Et











0
0
0
1











and

(25)

ψS = e−
ı
h̄

Et











1
0
0
0











or e−
ı
h̄

Et











0
1
0
0











denote respectively the negative energy and positive energy solutions. From
(24) the probability of finding the particle in a small volume about a given
point is given by

|ψA + ψS|
2 = |ψA|

2 + |ψS|
2 + (ψAψ

∗
S + ψSψ

∗
A) (26)
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Equations (25) and (26) show that the negative energy and positive energy
solutions form a coherent Hilbert space and so the possibility of transition
to negative energy states exists. This difficulty however is overcome by the
Hole theory which uses the Pauli exclusion principle.

However the last term on the right side of (26) is like the zitterbewegung
term. When we remember that we really have to consider averages over
space time intervals of the order of h̄/mc and h̄/mc2, this term disappears
and effectively the negative energy solutions and positive energy solutions
stand decoupled in what is now the physical universe.

A more precise way of looking at this is[15] that as is well known, for
the homogeneous Lorentz group, p0

|p0| commutes with all operators and yet
it is not a multiple of the identity as one would expect according to Schur’s
lemma: The operator has the eigen values ±1 corresponding to positive and
negative energy solutions. This is a super selection principle pointing to the
two incoherent Hilbert spaces or universes [16] now represented by states ψA

and ψS which have been decoupled owing to the averaging over the Compton
wavelength space- time intervals. But all this refers to energies such that our
length scale is greater than the Compton wavelength. As we reach energies
corresponding to the Compton wavelength scale, negative energy solutions
show up as anti particles. Thus the super selection principle which comes
into play on averaging over Compton wavelength scales dispenses with the
Pauli exclusion principle.
Thus once again we see that outside the Compton wavelength region we
recover the usual physics.

6 A Classical Viewpoint

Let us now try to understand from the standpoint of classical theory, why
we encounter luminal (or superluminal) velocities and complex coordinates,
corresponding to non-Hermitian operators, within the Compton wavelength
region. From a classical point of view, we could say that if in the Lorentz
transformation,

x = γ(x′ − vt), γ = (1 − v2/c2)−1/2 (27)

v > c is allowed, then the coordinates become imaginary, this being true
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within the Compton wavelength as in (23), in the sense that non locality
is allowed there. So (23) can be understood as representing a coordinate
which is imaginary within the Compton wavelength but becomes the usual
position coordinate outside, that is after averaging over these intervals. One
way of interpreting (23) would be that from our physical point of view using
(27) there is a region where v > c, consisting of virtual or superluminal ghost
particles bounded by a region, a sphere of radius equal to the Compton wave-
length consisting of massless ”particlets” (to distinguish them from partons,
instantons and the like, or to make a clean break, ”Ganeshas”) with velocity
of light. Only on averaging over this vortex like sphere or region, do we come
to the domain of conventional physics and the usual particles moving with
sub luminal velocities. It may be remarked that the De Broglie-Bohm picture
of a particle is that of an average over an ensemble (cf. ref.[1]) but the above
picture is different: It is an averaging over a physically inaccessible region.

Indeed it is known that for a collection of relativistic particles, the vari-
ous mass centres form a two-dimensional disc perpendicular to the angular
momentum vector ~L and with radius (ref.[17])

r =
L

mc
(28)

Further if the system has positive energies, then it must have an exten-
sion greater than r, while at distances of the order of r we begin to encounter
negative energies.

If we consider the system to be a particle of spin or angular momentum
h̄
2
, then equation (28) gives, r = h̄

2mc
. That is we get back the Compton

wavelength.

On the other hand it is known that (cf. ref.[9]), if a Dirac particle is
represented by a Gausssian packet, then we begin to encounter negative en-
ergies precisely at the same Compton wavelength as above. Thus a particle
can indeed be treated as a vortex or a spherical shell of relativistic sub con-
stituents or ”particlets” (or Ganeshas).
Another way of looking at this from a hydrodynamical perspective is to con-
sider for example a one dimensional streamlined flow of a fluid, with velocity
~v ≡ vx, along the x axis. In this case ~∇ × ~v vanishes everywhere, that is

14



there is no circulation (no vortices).
However all this applies to a singly connected space. As is well known one
could still have a circulation about a point P (for example cf.ref.[18]) exactly
as in the case of equation (6) because P would be a singularity and the space
would no longer be singly connected, rather it would be doubly connected. In
this case ~∇×~v would vanish everywhere except on the boundary of a closed
curve around the point P . We would now have a complex vector potential in
the complex plane x + ıy (cf.ref.[18]). Away from the point P in what may
be called the asymptotic region we would have the one dimensional flow, but
as we approach the point P , that is the boundary of the curve enclosing P ,
we encounter circulatory motion in the x+ ıy plane.
In our case the region bounded by the Compton wavelength plays the role
of the closed curve around the point P . Outside this region we have the
usual space (or space time) of Physics. But as we approach the Compton
wavelength region we encounter a region where each of the space time axes
becomes as it were a complex plane. We will return to this point.

7 Particles as Black Holes

The fact that, as we saw in sections 2 and 3, the mass generating non-
local amplitudes are confined to a region of width ∼ h̄

mc
suggests that the

particle could be a black hole, because in this case also, there is a width, the
horizon, inside which such unphysical phenomena appear. The possibility
that a particle could be a Schwarzchild black hole has been examined earlier
by Markov, Motz and others[19, 20, 21, 22] and leads to a high particle mass
of 10−5gm, without much insight into other properties.
So let us approach the problem from a different angle. We consider a charged
Dirac (spin half) particle. If we treat this as a spinning black hole, there is
an immediate problem:The horizon of the Kerr-Newman black hole becomes
in this case, complex[23],

r+ =
GM

c2
+ ıb,b ≡ (

G2Q2

c8
+ a2 −

G2M2

c4
)1/2 (29)

where G is the gravitational constant, M the mass and a ≡ L/Mc, L being
the angular momentum. That is, we have a naked singularity apparently
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contradicting the cosmic censorship conjecture. However, in the Quantum
Mechanical domain, (29) can be seen to be meaningful.
Infact, the position coordinate for a Dirac particle as we have seen is given
by Dirac[14]

x = (c2p1H
−1t+ a1) +

ı

2
ch̄(α1 − cp1H

−1)H−1, (30)

where a1 is an arbitrary constant and cα1 is the velocity operator with eigen
values ±c. The real part in (30) is the usual position while the imaginary
part arises from zitterbewegung. Interestingly, in both (29) and (30), the
imaginary part is of the order of h̄

mc
, the Compton wavelength, and leads

to an immediate identification of these two equations. We must remember
that our physical measurements are gross as noted earlier - they are really
measurements averaged over a width of the order h̄

mc
. Similarly, time mea-

surements are imprecise to the tune ∼ h̄
mc2

. Very precise measurements if
possible, would imply that all Dirac particles would have the velocity of light,
or in the Quantum Field Theory atleast of Fermions, would lead to diver-
gences. (This is closely related to the non-Hermiticity of position operators
in relativistic theory as can be seen from equation (30) itself [15]. Physics
as pointed out earlier begins after an averaging over the above unphysical
space-time intervals. In the process as is known (cf.ref. [15]), the imaginary
or non-Hermitian part of the position operator in (30) disappears. That is
in the case of the QMBH (Quantum Mechanical Black Hole), obtained by
identifying (29) and (30), the naked singularity is shielded by a Quantum
Mechanical censor.
To continue, we first adhoc treat a Dirac particle as a Kerr-Newman black
hole of mass m, charge e and spin h̄

2
. The gravitational and electromagnetic

fields at a distance are given by (cf.ref.[24],

Φ(r) = −
Gm

r
+ 0(

1

r3
)Er̂ =

e

r2
+ 0(

1

r3
), Eθ̂ = 0(

1

r4
), Eφ̂ = 0,

Br̂ =
2ea

r3
cosθ + 0(

1

r4
), Bθ̂ =

easinθ

r3
+ 0(

1

r4
), Bφ̂ = 0, (31)

exactly as required. Infact, as is well known, (31) also exhibits the electron’s
anomalous gyromagnetic ratio g = 2. So we are on the right track!
We next examine more closely, this identification of a Dirac particle with
a Kerr-Newman black hole. We reverse the arguments after equation (30)
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which lead from the complex or non-Hermitian coordinate operators to Her-
mitian ones: We consider instead the displacement,

xµ → xµ + ıaµ (32)

and first consider the temporal part, t→ t+ ıa0, where a0 ≈ h̄
2mc2

, as before.
That is, we probe into the QMBH or the zitterbewegung region inside the
Compton wavelength as suggested by (29) and (30). Remembering that
|aµ| << 1, we have, for the wave function,

ψ(t) → ψ(t+ ıa0) =
a0

h̄
[ıh̄

∂

∂t
+
h̄

a0
]ψ(t)

As ıh̄ ∂
∂t

≡ p0, the usual fourth component of the energy momentum operator,
we identify, by comparison with the well known electromagnetism-momentum
coupling, p0 − eφ, the usual electrostatic charge as,

Φe =
h̄

a0
= mc2 (33)

In the case of the electon, we can verify that the equality (33) is satisfied:
We follow the classical picture of a particle as a rotating shell with velocity
c, as encountered in sections 2 and 6, and which will be further justified in
the sequel. The electrostatic potential inside a spherical shell of radius ′a′ is,

Φ =
e

a
(34)

As is well known, the balance of the centrifugal and Coulomb forces gives,
for an electron orbiting another at the distance a,

a =
e2

mc2
,

which is the classical electron radius.
So, (34) now gives,

eΦ = mc2,

which is (33).
If we now use the usual value of ′a′ viz., 2.8×10−13cm., in (34) and substitute
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in (33), while rewriting the right side as h̄c/(h̄/mc) and substitute the value
of the electron Compton wavelength, h̄

mc
= 3.8 × 10−11cm., we get

h̄c ≈ 136e2

That is, we get the rationale for this fundamental relation, which no longer
turns out to be accidental. In any case, equation (33) throws up the connec-
tion between the charge, mass and the velocity of light.
It may be noted in passing that in the usual displacement operator theory
([14]) the operators like d

dx
or d

dt
are indeterminate to the extent of a purely

imaginary additive constant which is adjusted against the Hermiticity of the
operators concerned.
We next consider the spatial part of (32), viz.,

~x→ ~x+ ı~a,where|~a| =
h̄

2mc
,

given the fact that the particle is now seen to have the charge e (and mass
m). As is well known[25], this leads in General Relativity from the static
Kerr metric to the Kerr-Newman metric where the gravitational and elec-
tromagnetic field of the particle is given by (31), including the anomalous
factor g = 2. In General Relativity, the complex transformation (32) and the
subsequent emergence of the Kerr-Newman metric has no clear explanation.
Nor the fact that, as noted by Newman[26] spin is the orbital angular mo-
mentum with an imaginary shift of origin. But in the Quantum Mechanical
context and in view of the considerations of section 2 and 6, we can see the
rationale: the origin of (32) lies in the QMBH. We started with a massless
particle. Then we saw the emergence of mass and also the origin of gravita-
tion and electromagnetism in the processes inside the Compton wavelength
represented by an imaginary displacement - the nonlocal QMBH region.
More specifically, the temporal part of the transformation (32) lead to the
appearance of charge in (33). The space part then, as is known leads to the
Kerr-Newman metric.
There is another way to see the emergence of electromagnetism. It is well
known that for the Dirac four spinor,(θχ) where θ denotes the positive energy
two spinor and χ the negative energy two spinor, at and within the Compton
wavelength, it is χ that dominates. Further, under reflections, while θ → θ, χ
behaves like a psuedo- spinor[9]

χ→ −χ
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Hence the operator ∂
∂xµ acting on χ, a density of weight N = 1, has the

following behaviour[27],

∂χ

∂xµ
→

1

h̄
[h̄

∂

∂xµ
−NAµ]χ (35)

where,

Aµ = h̄Γµσ
σ = h̄

∂

∂xµ
log(

√

|g|) ≡ ∇µΩ (36)

As before we can identify NAµ in (35) with the electro-magnetic four poten-
tial. That N = 1, explains the fact that charge is discrete. It will be shown
in the next section that,

Aµ ∼ const.
e2

r
(37)

in agreement with (33). That is, electromagnetism is the result of the covari-
ant derivative that arises due to the Quantum Mechanical behaviour of the
negative energy components within the Compton wavelength region.
We observe, that in case the mass m → 0, the considerations of section 3
imply that there are no negative energy components while (33) and (37) show
that such a particle has no charge. The massless neutrino fits this description
exactly: it has a two component wave function and is chargeless.
There is also the muon which satisfies (37) in the order of magnitude sense.
But it is unstable and disintegrates into an electron (or positron) and two
neutrinos anyway.
Thus these considerations describe the stable leptons, viz., electrons and neu-
trinos, and approximately the remaining unstable lepton.
It is worth noting that equation (36) strongly resembles Weyl’s formulation
for the unification of electromagnetism and gravity. But there is an important
difference [28]: Weyl’s Christoffel symbol contains two independant entities
- the metric tensor gµv and the electromagnetic potential Φ. So there is no
unification of electromagnetism and gravity. Our formulation uses only the
Quantum Mechanical pseudo spinor property.
It is interesting that, in the light of the above considerations an application of
Maxwell’s equations in this Compton wavelength region of ”charged matter”
leads to meaningful results: In this case the fact that Aµ in (36) is a four
gradient poses no problem. We have, using Maxwell’s equations [29],

φ ≡ A0 =
∂Ω

∂t
, ~B = ~∇X ~A = ~∇X(~∇Ω) = 0,
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~E = −
∂ ~A

∂t
− ~∇φ = −2~∇Ω, ~E = −2~∇φ (38)

Also,
~∇. ~E = 2∇2φ = 4πσ, ~∇. ~B = 0, (39)

while

~∇× ~B = 0 = 4πs+
∂ ~E

∂t
(40)

and,

~∇× ~E = −σ
∂ ~B

∂t
= ~∇× (2~∇φ) = 0

Equations (38), (39), and (40) show that effectively this is a steady field with
potential φ that is, we would work as if we have a steady field of potential φ
except that there is an anamolous doubling of the charge and current. Now,
as is well known the usual orbital magnetic moment is given by [30]

µ =
e

2mc
pφ (41)

where pφ is the angular momentum and e is the charge. In our case, e in
(41) is effectively replaced by 2e, so that in the usual units of e/2mc, we now
have for the Dirac particle, instead of (41),

g =
µ

pφ
= 2

This is the anomalous gyromagnetic ratio which arises because as noted ear-
lier spin is the orbital angular momentum with an imaginary shift of origin,
or equivalently within the Compton wavelength region. We come to this
point now, in greater detail.

8 A General Relativistic Approach: Origin

of QCD Interactions

Thus far it appears that the QMBH description applies to electrons and more
generally Leptons. In the light of the preceding considerations, we will now
approach the problem from a General Relativistic point of view. This will
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also reveal the origin of QCD type interactions. Taking the cue from the
foregoing considerations, we now treat the particle as a relativistic fluid of
”particlets” (or Ganeshas). Our starting point is the linearized theory [24]:

gµv = ηµv + hµv, hµv =
∫

4Tµv(t− |~x− ~x′|, ~x′)

|~x− ~x′|
d3x′ (42)

(A bar on T has been dropped.)
In (42), velocities comparable to the velocity of light c are allowed and also the
stresses T jk and momentum densities T 0j can be comparable to the energy
momentum density T 00. As in ref.[24], we can easily deduce that, when
|~x′|
r
<< 1, where r ≡ |~x|, and in a frame with origin at the centre of mass

and at rest with respect to the particle,

Gm =
∫

T 00d3x (43)

Sk =
∫

ǫklmx
lTm0d3x (44)

where m is the mass (or approximate mass because of the linear approxima-
tion), and Sk is the angular momentum. We next observe that,

T µv = ρuµuv (45)

If we now work in the Compton wavelength region of the QMBH, we have,
while u0 = 1,

|ul| = c (46)

(This is the Quantum Mechanical input)
Substitution of (45) and (46) in (44) gives on using the Mean Value Theorem,

Sk = c < xl >
∫

ρd3x

As < xl >∼ h̄
2mc

, using (43), we get, Sk ≈ h̄
2
, as required for a spin half par-

ticle. Infact this relation becomes exact if we treat the QMBH as effectively
a rotating shell distribution of radius h̄/2mc as noticed earlier and, keeping
in mind the fact that the interior region is in any case unphysical as seen in
section 6, and is described by complex space-time coordinates. Once again
we can see why orbital angular momentum with a complex shift gives spin,
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as noticed earlier by Newman but without a rationale (cf.ref.[26]).
The gravitational potential can similarly be obtained from (42) and (43) (cf.
ref.[24]),

Φ = −
1

2
(g00 − η00) = −

Gm

r
+ 0(

1

r3
) (47)

We saw in section 7 that the electromagnetic potential is given by,

Aµ = h̄Γµσ
σ

Using the expression for the Christoffel symbols, we have,

Aσ =
1

2
(ηµvh̄µv), σ,

so that, from (42),

A0 = 2
∫

ηµv ∂

∂t
[
Tµv(t− |~x− ~x′|, ~x′)

|~x− ~x′|
]d3x′

Remembering that |~x− ~x′| ≈ r for the distant region we are considering, we
have,

A0 ≈
2

r

∫

ηµv[
∂

∂τ
Tµv(τ, ~x

′).
d

dt
(t− |~x− ~x′|)]d3x′ ≈

2

r

∫

ηµv d

dτ
Tµv.(1 + c)d3x′,

or finally

A0 ≈
2c

r

∫

ηµv d

dτ
Tµvd

3x′ (48)

as c >> 1, and where we have used the fact that in the Compton wavelength
region, |uv| = c.
It has already been observed that QMBH can be treated as a rotating shell
distribution with radius R ≡ h̄

2mc
. So we have,

|
duv

dt
| = |uv|ω (49)

where ω, the angular velocity is given by,

ω =
|uv|

R
=

2mc2

h̄
(50)
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We get the same relation in the theory of the Dirac equation, remembering
that in (43) and (44) the centre of mass is at rest:

ıh̄
d

dt
(cαı) = −2mc2(cαı),

where cαı is the velocity operator (cf.ref.[14]). Finally, on using (45), (49)
and (50) in (48), we get,

e′e

r
= A0 ∼

h̄c3

r

∫

ρωd3x′ ∼ (Gmc3)
mc2

r
(51)

where e′ = 1esu corresponds to the charge N = 1 and e is the test charge.
Because of the approximations taken in deducing (51), a dimensional con-
stant (L

T
)5 has to be multiplied on the left side, which then becomes, in units,

c = G = 1,
e′e.(dimensional constant) ≈ 1.6 × 10−111cm2

The right side is,
Gm2c5 ≈ 4.5 × 10−111cm2,

in broad agreement with the left side.
Alternatively, using the values of G,m and c in (51), we get,

e ∼ 10−10esu,

which is correct.
Yet another way of looking at (51) is, that we get, as e′ = 1esu ∼ 1010

e2

Gm2
∼ 1040,

which is well known empirically. But equation (51) gives the reason for this
relation.
In any case, equations (33) and (51) show the inter-relation between e,m, candG.
So far we have been considering distances far from the particle: |~x′ − ~x| >>
|~x′|. This is the approximation invoked in a transition from (42) to equations
(43), (44) etc. Let us now see what happens when |~x| ∼ |~x′|. In this case, we
have from (42), expanding in a Taylor series about t,

hµv = 4
∫ Tµv(t, ~x

′)

|~x− ~x′|
d3x′ + (terms independent of~x) + 2

∫

d2

dt2
Tµv(t, ~x

′).|~x− ~x′|d3x′ + 0(|~x− ~x′|2) (52)
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The first term gives a Coulombic α
r

type interaction except that the coefficient
α is of much greater magnitude as compared to the gravitational or electro-
magnetic case, because in this approximation, in an expansion of (1/|~x−~x′|),
all terms are of comparable order. To proceed further, using (49), we have,

d

dt
T µv = ρuv du

µ

dt
+ ρuµdu

v

dt
= 2ρuµuvω,

so that,
d2

dt2
T µv = 4ρuµuvω2 = 4ω2T µv

where ω is given by (50). Substitution in (52) gives,

hµv ≈ −
βM

r
+ 8βM(

Mc2

h̄
)2.r (53)

β being a constant.
This resembles the QCD quark potential [31], with both the Coulombic and
confining parts. Taking for M the mass of a typical C quark ∼ 1.8Gev
(cf.ref.[31]), the ratio of the coefficients of the r term and the 1

r
term as

obtained from (53) is ∼ 1

h̄2 (Gev)2 as in the case of QCD (ref.[31]). In any
case these considerations show that we can get different interactions at differ-
ent distances in a unified picture, which can approximately atleast represent
quarks also.
In this picture, how do we accommodate anti-particles, for example positrons?
While treating the negative energy spinor as a density in section 7 we had
assumed that N = 1. Equally well, we could have chosen N = −1. This
reverses the sign of the charge, all else remaining the same. So with N = −1,
we get a positron. Similarly for quarks, N can be taken to be fractional.
But this apart it must be remembered that whereas for electrons we took the
asymptotic expansions of equations like (42), in the case of quarks we had
to consider the region near the Compton wavelength itself.
Thus, it appears that the treatment of Leptons and approximately quarks
as QMBH leads to meaningful results. On the other hand, these are the
most fundamental constituents of matter, according to current thinking. An
alternative is suggested in the next section.
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9 Discussion and Miscellaneous Comments

1) We have seen that a particle could be treated as a relativistic vortex, that
is a vortex where the velocity of circulation equals that of light or a spherical
shell, whose constituents are again rotating with the velocity of light or as a
black hole described by the Kerr-Newman metric for a spin 1

2
particle.

The fact that we get the gravitational potential m
r

in equation (47) again
confirms that mass comes from the Compton wavelength region.
2) The equation (6) emerges on using the fact that S is defined only up
to a multiple of π, whence we get equation (7) giving quantized spin. As
pointed out from equation (7) the Compton wavelength emerges. On the
other hand equation (28) shows that given the spin h̄

2
, we get the Compton

wavelength. It is also to be noted that equation (44) gives the spin h̄
2

if we
use the Compton wavelength. The Compton wavelength itself appears in
quantum mechanics due to the Heisenberg uncertainity principle. So it ap-
pears that the quantum mechanical quantized spin and Compton wavelength
can be obtained from classical considerations like relativistic vortices. In any
case the remarkable universality of the Compton wavelengh was pointed out
by Wigner[32] - the above considerations show why it emerges in a natural
way. It is interesting to note that Wignall[33] has pointed out that it is the
Compton wavelength which is primary, from which even the mass follows.
The foregoing lends support to this viewpoint.
It may be pointed out, that interestingly, from a different viewpoint, using
considerations of self symmetry, if we assume that the scale of the universe
is broken at some stage, that is there is an ultimate micro-level for our mea-
surements, then the Compton wavelength again appears as a fundamental
length [34].
3) The fact that the spin of the particle is directly connected to the number
of end points of the nodal lines, as seen in section 2 appears to indicate that
Fermions are primary and that Bosons can be treated as bound states of
Fermions. As pointed out, quarks also could be approximately treated as
Quantum Mechanical Black Holes in the foregoing sense, and as it is known
pions and other hadrons are indeed treated as bound states of a quark and an
anti quark. (Indeed from considerations of the symmetry between leptonic
and hadronic currents, leptons and hadrons appear to be the same [35].)
4) In ordinary Quantum Mechanics, ψ being the wave function, ψψ∗ is pro-
portional to the probability density. On the other hand, we saw in section
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3 that the mass density is produced by the non-linear amplitude ψψ∗ in the
Compton wavelength region. More specifically we saw in sections 7 and 8 that
it is χ, the negative energy part of the Dirac four spinor (which dominates
in this region), that is relevant. That is, ρ being the material density,

ραχχ∗ (54)

As observed in section 7, for the two component neutrino, χ = 0, and the
neutrinos are massless.
It was shown in an earlier communication [36, 37], how Gravitation can
emerge from the Schrodinger equation self-consistently. Again, it is the iden-
tification of the material density in (54) which gives substance to that result.
5) Treating the particle as a vortex as in section 2, arguments for a monopole
in section 4 then show that there would be the Bohm-Ahranov like effect [38]
at the Compton wavelength scale.
6) If in the position formula (30), we consider the real part and also a time
interval of ∼ h̄

mc2
, we get for p = mc,

x =
h̄

mc

This result can also follow from the Heisenberg Uncertainity Principle.
We see the emergence of the Planck constant h̄ in the extreme situation of the
maximum velocity and minimum physical space-time intervals. Moreover,
h,m and c are inter-related. Taking the cue from here, we pick up the result
in section 3 viz.,

Eαm or E = my,

where y is the constant of proportionality which was identified adhoc earlier
with c2. Using now Heisenberg’s Uncertainity relations, and considering the
extreme case, we have, firstly,

t ∼
h̄

my
,

so that x = ct ∼ h̄c
my

, where c is the maximum possible velocity. Further, in
this case,

p = mc ∼
h̄

x
=
my

c
,
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so that y = c2.
This provides a Quantum Mechanical justification for the formula E = mc2,
without taking recourse to special relativity. Indeed as suggested by section 3,
e.g. equation (18) and the discussion of the Sagnac effect, the origin of special
relativity could be traced to these Quantum Mechanical considerations.
7) It is interesting to note that the above model of a particle could give a
rationale for the left handedness of the neutrino in the light of sections 5 and
6. In the case of the neutrino, as the mass is vanishingly small, the Compton
wavelength tends to infinity or turns out to be very large. On the other
hand we encounter the negative energy solutions within this region. That is
we encounter negative energy neutrinoes only. The equation for a negative
energy neutrino is (cf. ref.[15]).

(−po)v(p) = +~σ.~pv(p)

This is the equation for a left handed neutrino in the physical world of posi-
tive energy solutions.
8)There is a close connection between the complex shift of section 7, equa-
tion (32) (and so, ultimately the Kerr-Newman metric), the hydrodynamical
formulation of section 2 and the monopole theory of section 4.
Infact, we could identify Kµ of section 4 and the momentum vector pµ from
section 2 with 1

aµ of (32). If further aı is taken to be of the order of the
Compton wavelength, h̄

mc
and similarly ao to be of the order of h̄

mc2
we get

immideately

|~p||~a| ∼ mc
h̄

mc
= h̄,

which can also be obtained from the Heisenberg uncertainity principle.
9) It may be remarked that we started in section 3 with purely Quantum
Mechanical postulates and deduced mechanical effects. We came a full circle
in section 8 wherein, from purely classical considerations, we deduced Quan-
tum Mechanical phenomena.
10) The fact that the magnetic field which arises in the monopole formulation
as given by equation (22) and the quantized spin angular momentum which
arises in the hydrodynamical formulation as given by equation (7) appear to

be one and the same is remarkable. This is caused by the fact that the ~K and
the momentum vector as given in the two formulations are really one and
the same, as pointed out in section 4. Indeed the Coriolis and other effects
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of rotating frames [39] bear a strong resemblence to the magnetic effects. As
pointed out, electromagnetism and gravitation can be unified in a general
relativistic version of quantum mechanics as symbolised by the complete de-
scription of the electron in terms of the Kerr-Newman metric. This has been
indicated in section 8. Thus in this picture monopoles disappear. Indeed
they have not been found todate and Dirac himself expressed his conviction
that they do not exist [40]. (They appear again in the theory of non Abelian
guages.)
11) The double valuedness that arises from a nodal singularity on the one
hand and half integral spin on the other finds an immediate echo in the
Kerr-Newman metric. This can be seen as follows.

In natural units the metric is given by (cf. ref.[24]).

ds2 = −
∆

ρ2
[dt− a sin2 θdφ]2 +

sin2 θ

ρ2
[(r2 + a2)dφ− adt]2 +

ρ2

∆
dr2 + ρ2dθ2,

where, a is the Compton wavelength and,

∆ = r2 − 2mr + a2 +m2 + e2, ρ2 ≡ r2 + a2 cos2 θ

At r = a and θ = π/2, ∆ = 2a2 as both e and m << a, and ρ2 = a2.

If further, we take adφ
dt

= λ, we get,

ds2 = (2λ2 − 1)dt2 +
1

2
dr2

The choice λ = 1

2
leads to,

ds2 = −
1

2
dt2 +

1

2
dr2,

which is Minkowski like, except for the scale factor 1√
2
. In the foregoing

model, adφ
dt

= velocity of light = 1. The choice λ = 1

2
can be understood as

follows: If the azimuthal angle measured by an observer at rest far away, is
φ′, then we get back the velocity of light at r = a for this observer, if φ′ = 2φ,
which is precisely spinorial behaviour.

In other words, special relativity for the spin 1

2
electron can be seen to

emerge from the Kerr-Newman metric.

28



12) More general than the radius of the horizon given in (28) is the static
limit of the Kerr-Newman Black Hole, wherein ′a′ is replaced by acos θ, θ
being the usual polar coordinate. However in the QMBH, as we approach
the Compton wavelength ∼ a, we encounter the unphysical zitterbewegung
region where θ ceases to have any physical meaning. In other words, the spin
in insensitive to θ unlike in the classical case. This is ofcourse well known in
Quantum Mechanics.
13) As has been pointed out in the introduction, QFT works with point parti-
cles and a space-time continuum in a special relativistic context. Divergences
appear when we go right upto r = 0. However, it appears that for Fermionic
Fields atleast, this picture may be valid only for distances greater than the
Compton wavelength: This is in the spirit of Effective Field Theories [41, 42].
(In the words of Weinberg, QFT could be a ”low” energy approximation).
The above model forbids such a limiting process for Fermions and sets a
cut off. Once we enter the QMBH region, a very high energy phenomenon,
space-time in the conventional sense becomes unphysical. The appearance of
complex coordinates or non- Hermitian operators is a manifestation of this
unphysical feature.
14) In the usual formulation of the Hole Theory, the Dirac sea is filled with
negative energy electrons, and by invoking the Pauli exclusion principle, tran-
sitions to negative energy states are forbidden. In the present formulation,
in effect, the Dirac sea of negative energy states is squeezed into the QMBH
and the Quantum Mechanical censor of section 7 forbids transitions.
15) It may be remarked that there have been somewhat similar approaches,
but these do not explain enough or they assume too much, being still some-
what tentative and preliminary. We discuss some of these very briefly.
Barut and Bracken[43] treat the zitterbewegung effects as a harmonic oscil-
lator in the Compton wavelength region while spin appears as the orbital
angular momentum associated with the internal system which is taken to be
circulating with velocity c and whose space has a curved geometry. The rest
mass is the internal energy in the rest frame of the centre of mass of the
system. However this model has a number of shortcomings [44].
Hestenes [45] takes a slightly different view treating the zitterbewegung as
arising from self interaction, there being an electro magnetic wave particle
duality, though electron spin is again the orbital angular momentum with
respect to an instantaneous rest system of radius equalling the Compton
wavelength. But a number of assumptions are made for getting consistency
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with the Dirac equation.
Chacko [46, 47] following a cue of John A. Wheeler models in a somewhat
adhoc scheme, elementary particles as superdense geometrodynamical (that
is General Relativisitc) entities confined to travel with the velocity of light
in circular paths, again of radius equalling the Compton wavelength. Unfor-
tunately properties like spin, magnetic moment, charge etc. are not incorpo-
rated in this scheme.
16) A question that arises is, can we arrive at a mass spectrum? A pre-
liminary indication has been given in [48]. The point is that there are a
few schemes which give the mass spectrum of a large number of elementary
particles as composites of pions [49] or leptons like the electron positron and
neutrino [50]. Indeed as the discussion following equation (33) shows, a pion
can be considered as an electron positron composite because its Compton
wavelength equals the classical electron radius which resembles the fact that
the pion is a quark anti- quark composite. These could be incorporated into
the above QMBH considerations to get a mass spectrum[48]. In particular it
is interesting to note that in the above considerations it is possible to think
of a proton as a composite of two positrons and an electron consistent with
deep inelastic scattering data. Such a scheme gives a rationale for the matter
anti-matter imbalance.
17) In recent years the problem of inertial mass has received some attention,
apart from its usual Machian characterisation [51, 52].
18) Four final comments:
In the above considerations regarding the Compton wavelength we have con-
sidered free particles. However as equation (33) and the subsequent brief
discussion indicates the scales could decrease by a few orders of magnitude
in the presence of interaction.
For the record it may also be mentioned that the stability and indivisibility
of hydrodynamical vortices had lead to pre-Quantum Mechanical speculation
that atoms may be represented by such vortices[18].
Effects like the Lamb shift could be explained in the present model by argu-
ments similar to those in ref.[44].
The inertial mass of section 3 could also be thought to arise for a free par-
ticle with effective mass m′, from the known non-local Schrodinger equation
(cf.ref.[7]).
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