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Counting outcomes is the obvious algorithm for generating probabilities in
quantum mechanics without state-vector reduction (i.e. many-worlds). This
procedure has usually been rejected because for purely linear dynamics it gives
results in disagreement with experiment. Here it is shown that if non-linear
decoherence effects (previously proposed by other authors) are combined with
an exponential time dependence of the scale for the non-linear effects, the correct
measure-dependent probabilities can emerge via outcome counting, without the
addition of any stochastic fields or metaphysical hypotheses.

1 Introduction

The central question in the interpretation of quantum mechanics is how un-
ambiguous macroscopic observations arise probabilistically from an underlying
theory whose dynamical equation, in so far as it is known, obeys superposition
and is deterministic. (See, e.g. [1].) In this paper I shall argue that the correct
quantum probabilities may be obtained by outcome-counting [2, 3], the process
which directly corresponds to our operational definition of probabilities, in a
model without state-vector reduction, i.e. a type of many-worlds model. To
obtain this result, it will be necessary to employ a modified state-vector dynam-
ics, violating superposition. I shall illustrate the idea using a cartoon form of
non-linear decoherence effects (previously proposed to arise in quantum gravity
[4, 5]), along with a simplified non-random form of the effectively non-unitary
time-dependence employed in recent explicit stochastic collapse theories [6, 7,
8, 9, 10]. However, it will be unnecessary to invoke the intrinsically stochastic
constituents or metaphysical interpretive addenda required in other approaches.

I shall begin by briefly reviewing related approaches to clarify what problem
this new approach is addressing. Then I shall present a toy model to illus-
trate how the standard quantum probabilities can emerge as the limits of ratios
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of numbers of distinct non-interfering outcomes in a non-linear many-worlds
picture, when non-linear decoherence processes produce decoherent branches
whose measures become equal in the long-time limit. Some constraints on more
complete and realistic models based on the same idea will then be presented.

2 Background: Probability with and without
collapse

Many-worlds interpretations have pointed out that the branching of the state-
vector into parts which represent macroscopically distinct outcomes arises di-
rectly without alteration of the standard linear time-dependence. [11, 12] Branch-
ing here means simply that the state evolves to one that can be written as the
sum of components between which so many variables (e.g. particle coordinates)
differ in complicated ways that the chance of subsequent interference between
the components is negligible. When parts of a system become correlated with
variables intrinsically outside the system we can refer to the branching as true
decoherence, for which subsequent interference between branches is essentially
undetectable.

The “consistent histories” program of explaining the states along which the
branching preferentially occurs, within a linear dynamical equation lacking an
“outside”, [13] is far from complete. [14] In particular, if the time-dependence
of the state is purely linear, the time dependences of the state components are
entirely independent for any decomposition of the state into components. Refer-
ence to interference assumes physical significance of some non-linear function of
the state (e.g. its square), a feature which is not present in the linear dynamics.

An open environment, however, can break the symmetry between states in
a system’s Hilbert space, giving a natural set of “pointer states” by a process
dubbed “einselection”[15]. These pointer states are distinguished by having a
collection of predictable quasi-classical observables.[15] Thus, despite the diffi-
culties discussed above, it is possible to at least consider defining probabilities
of some preferred outcomes within a linear theory without state-vector collapse.

It was realized long ago that, if one accepts the claim that state-components
representing macroscopically distinct outcomes form non-interfering distinct
“worlds”, the many-worlds interpretation leads to an obvious prediction for
the probabilities in simple experiments with a finite number of possible discrete
outcomes. [2, 3] Since each world is equally real, so is the version of the experi-
menter’s mind which is represented in that world and correlated with the other
macroscopic outcomes represented in that world. In an experiment repeated
many times, most worlds would show nearly equal numbers of each discrete
outcome, regardless of the measures of the state components representing those
outcomes. As Graham put it, “It is extremely difficult to see what significance
measure can have when its implications are completely contradicted by a simple
count of the worlds involved, worlds that Everett’s own work assures us must
be on the same footing.” [3] The prediction that probabilities of each macro-



scopically distinct outcome of a quantum experiment would be equal, regardless
of the measure of the components of the state-vector, obviously contradicts
observation. [2, 3]

Thus if the standard many-worlds (no collapse) view can explain probabili-
ties, it explains the wrong probabilities. As reviewed recently by Saunders, [16]
attempts to fix this probability problem within the many-worlds interpretation
of the linear time-dependence (e.g. [17, 18]) have required adding some meta-
physical hypothesis beyond the evolving quantum state, thus losing the initial
appeal of deriving the interpretation directly from the dynamical equation.

Recently, Zurek [15] has given a formal argument concerning the relation
between outcome-counting and probabilities. In order to extend the argument
to cases in which different outcomes have different measures, he makes a formal
decomposition of the density matrix into parts which have correlations with
various states of a hypothetical outside system. (See his equations 4.10 through
4.12.[15]) The components of the density matrix correlated with each individual
outside state are implicitly assumed to have equal measure, and a limit is consid-
ered in which the number of outside states is so large that the number matched
with any pointer state of the system becomes proportional to the measure along
that pointer state.

Zurek’s procedure may be illustrated by considering a case in which only
two pointer outcomes (A and B) are possible for the system in state ¢. The
density matrix from Zurek’s account is then:

S AN A+ X BB |
p = P (1)

where the j’s denote orthogonal states of the outside system and it is pos-
tulated that a/b ~|< ¢ | A >2 / < ¢ | B >?|. However, Zurek treats this
decomposition as a purely formal procedure, within the context of purely linear
dynamical equations. If the states “” and the density matrix (1) are fictive,
it is difficult to see how they can determine the operationally defined proba-
bilities. If they represent a real outcome of dynamics starting with a system
state uncorrelated with the outside, it is certain that those dynamics are not
linear, since superposition forbids the dependence of @ and b on < ¢ | A >2
and < ¢ | B >2. Linear dynamics, of course, instead produce a sum of fized
numbers of terms whose coefficients depend on < ¢ | A >2 and < ¢ | B >2.

In contrast, macro-realist theories such as that of Ghirardi, Rimini, and
Weber (GRW) [19] or the more developed versions of Pearle and coworkers,
e.g. [7, 8], propose that there are explicit modifications of the dynamics, which
always directly or indirectly require non-linear time-dependence, causing the
state to collapse stochastically along some pointer projection operator, rather
than forming a superposition of macroscopically distinct outcomes. [7, 8, 19]
There is no time-reversed analog of the collapse, so the dynamics do not obey
CPT. The postulated set of pointer operators directly addresses the preferred-
state question raised by linear theories. Whether these pointer operators must
be introduced ad hoc or can in some way be deduced from a deeper theory,




perhaps including quantum gravity [4, 5, 8], remains to be seen. The key testable
feature of such explicit collapse theories is that the collapse process would cause
anomalous decoherence, so interference would be lost which would have been
present if there were strictly linear time dependence of the state. [20]

One argument supporting the existence of such non-linear processes is based
on the possibility that there are intrinsically unobservable variables (due to
horizons) associated with quantum gravity, so that the correlations among the
usual variables could only be represented by density matrix given by a trace
over the unobserved variables. [4, 5] Within such genuine decoherence theories,
in general, the time derivative of the state-vector is not representable by a linear
operator and CPT symmetry need not be obeyed. [4, 5]

The better-developed versions of the explicit collapse theories require the
inclusion of a non-quantized stochastic field. [7, 8, 9, 10] These stochastic
fields possess non-local correlations to account for the results of Bohm-EPR-
Bell experiments. [21] An attempt to quantize the stochastic field produced
only decoherent superpositions, not actual collapse. [6, 10] A “moving finger”
was then hypothesized to pick which decoherent solution actually occurred, [10]
similar to the hypotheses outside the dynamical equations required in other
approaches. Thus, if the explicit collapse theories are to dispense with meta-
physics, they appear to require not only a non-linear dynamical equation but
also explicit random elements and classical fields, leaving a theory with very
diverse constituents.

3 A new approach

The idea I will present essentially amounts to a justification for how density
matrices resembling that in equation (1) can arise within non-linear dynam-
ics, thus justifying their use in predicting actual probabilities. In other words,
the incorrect probabilities which have been predicted to arise from counting
branches in the linear dynamical theory may be fixed by altering the dynamical
equations rather than by giving up the compelling outcome-counting algorithm.
Although I shall borrow the ideas of a non-linear loss of interference and an in-
trinsic time asymmetry from arguments employed in explicit collapse pictures,
[4, 5, 6, 10, 19], by dropping the requirement of unique outcomes I shall remove
the need for non-quantized stochastic fields. (Many-worlds interpretations have
always pointed out that the consistency of observed macroscopic reality does
not require macroscopic outcomes to be unique unless one makes the auxiliary
assumption that the observer remains unique.[11])

The essential idea is that, as found in the attempt to fully quantize col-
lapse theory by replacing the classical stochastic field with a quantum field
representing new variables, [6, 10] each macroscopic branch of the state-vector
has many sub-branches, with distinct values of some new quantum variables.
However, rather than arbitrarily consign all but one of these sub-branches to
“non-reality”, we assume that they all actually persist. Thus probabilities are
determined simply by their numbers, as in the obvious outcome-counting algo-



rithm which gave incorrect probabilities in purely linear collapse-free theories.
In order for the newapproach to work, the number of sub-branches associated
with each macroscopic outcome must become proportional to the measure of
the component of the state representing that outcome on the time-scale of a
measurement, i.e. on the same time-scales invoked in explicit collapse theories,
for the sorts of macroscopic systems in which quantum probabilities have been
recorded. [9, 19]

In the discussion to follow, “sub-branch” has a fairly precise meaning: a
state component which cannot be divided into distinct parts between which
subsequent interference is vanishingly small, when all the quantum variables are
included. A “sub-branch” would be called a “world” in many-worlds terminol-
ogy. (It will turn out not to be necessary to specify ahead of time whether two
macroscopically distinct outcomes are always on distinct sub-branches, since
if sub-branches containing macroscopic superpositions are allowed, they will
become an exponentially rare fraction of the total number of sub-branches.)
“Branch” will have a less precise meaning: a collection of sub-branches which
comprise a macroscopically distinct outcome. When a continuum of macro-
scopic outcomes are possible, this grouping is a bit arbitrary, as usual, but none
of our arguments will rely on how that grouping is made.

4 Illustration via a toy model

We may illustrate the basic workings of approach by using an initial toy model,
closely analogous of GRW. [19] This toy model is not relativistic, and is not in-
tended to give an accurate representation of the non-linear branching dynamics.
Instead, I simply assume a particularly simple non-linear branching algorithm to
illustrate the generic consequences of such processes, whose origins and details
must be sought elsewhere.

We assume that the Hilbert space in which the statevector | ® > resides is
the direct product of the space in which the conventional state | ¢ > resides
and a space which describes new variables. The state of these new variables will
be denoted by a label L, whose form will be discussed below. Then, a basis set
for the whole space can be formed from states of the form | & >=| ¢ >| L >.
We assume that there is set of pointer projection operators {Pr}, where each
I' denotes both a sub-space (denoted 7y) of the standard Hilbert space and a
particular sub-space of the new-variable space. These pointer operators will not
be be assumed to be normalized, i.e. P2 = pPr with p # 1 in general. In fact (for
reasons soon to be explained) they will be assumed to have a time-dependent
normalization and thus be written as Pp(t).

For the non-linear branching process, we employ the simplest cartoon of such
a process we can come up with. When any Mr(t) =< @ | Pr(t) | ® >, reaches
a definite value (which we can arbitrarily define to be unity), a new sub-branch
emerges, on which the unspecified new variables acquire a new state orthogonal
to their old state as described by the following algorithm
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Here we have described the development of an orthogonal state of the new
quantum numbers on the new sub-branch by the unitary operator Cr(t) which
acts on the Hilbert space of the new variables. Z is a real number, 0 < Z < 1,
which specifies the fraction of the measure in the I' sub-space which is assigned
to the new sub-branch. The expression in curly brackets represents the old
state with some of its measure in the I' pointer sub-space removed. The co-
efficient of the second term within the brackets has been picked to keep the
norm < ® | ® > of the total state unchanged. We shall refer to the dynamics
represented by algorithm (2) as anomalous branching. Algorithm (2) is written
in a form independent of the normalization of Pr and also independent of the
dimensionality of the subspace to which Pr projects. If two distinct Mp’s reach
1 at the same time, it is easy to check that the state resulting from the bifurca-
tion algorithm is independent of the order in which the two branchings occur,
so long as the product of the two projection operators is zero. The parameter
Z in algorithm (2) unfortunately remains arbitrary in the absence of a deeper
theory. For certain illustrative purposes, we shall employ Z=1/2, but shall ar-
gue that, although no fine-tuning of Z is required, the simple choice Z=1/2 is
not in general suitable. Most details of the splitting process (even our choice of
bifurcations rather than some more general multifurcation) will not, however,
be essential to the workings of the model, so long as it preserves < @ | & >.

Although I have nothing new to add to previous ideas concerning the ori-
gins of non-linear decoherence, [4, 5] a cartoon account of the operator Cr(t)
might be helpful. One could imagine the Hilbert space of the new variables as
something associated with the as yet unrealized quantum theory of gravity and
Cr(t) as the creation operator for a particle propagating endlessly into an open
“outside”, starting at time t. Permanent maintenance of orthogonality between
states created at different times might require either some non-linearity to avoid
dispersion or horizons to make dispersion irrelevant.

We assume that there is an initial unique state for all the new variables (of
which there may be an uncountable number) so all that needs to be expressed
to distinguish their current state is a countable list of the changes in that initial
state induced by the anomalous branching process. One may then regard Cr(t)
as adding a label (v,t) specifying the pointer operator involved and the time at
which the anomalous branching occurred:

Cr(t) [ @r) = Cr(t) | ¢4) [ Lo) =|94) [ (1), Lo) (3)

where Lo is a list of previously acquired labels. Each sub-branch here ac-
quires a unique list of labels recording the previous anomalous branching times
for each pointer operator. The labeling (although not the branching algorithm)



closely resembles ones employed both in linear decoherence theories [15] and in
non-linear collapse pictures. [9, 10]

Processes like algorithm (2) would not suffice to maintain non-linear branch-
ing if each Pr maintained a fixed normalization. The reason is that once the
measures of the separately labeled (permanently decoherent) sub-branches fell
to less than 1/p there would be no way for any Mt to reach one again. There-
fore it is necessary, in order to obtain a theory in which non-linear branching
persists, to invoke a non-unitary time-dependence of the pointer operators:

Pr(t) = Pr(0)e!/" (4)

Although there will be one particular time (before the first anomalous branch-
ing) for which Pr(t) is a normalized (p=1) projection operator, that need not
be chosen as t=0. At this point we shall not discuss how to assign 7, except
that the same 7 will be used for each pointer operator within any family related
by a symmetry such as spatial translation.

Let us initially consider a particle for which we can ignore the ordinary
quantum dynamics, e.g. because the particle is very massive. We shall also
assume that the projection operators are one-dimensional, i.e. they project to
states. Let us also initially assume for convenience that the parameter Z=1/2.

We shall follow what becomes of a state component (with a single initial
label, Lo) whose state ¢ happens to have been split by a “measurement” into
two widely separated pieces A and B, each conveniently lying along one pointer
state. In other words, there are pointer operators P4 =
get/T|A>|L><L|<A|and Pg; = ge!/" | B>| L >< L |< B | where g
is a constant whose value depends exponentially on the choice of time origin.

We first consider the case in which M4 1,(t) = Mp, 1o(t). For convenience
we assign t=0 to the time of the first branching, which is equivalent to setting
the prefactor g in P4 to g=2 if we choose to express this state component in
normalized form. Applying algorithm (2) gives simultaneous branching for A
and B, with the resulting state independent of the order in which we perform the
two branching operations. We define T= 7in(2), the time between successive
paired branching events. We obtain the following sequence of states after these
events:

1/212)(| A+ | B) | Lo) —

(1/2)(1 4) [ (4,0), Lo) + (| A)+ [ B)) [ Lo)+ | B) | (B,0),Lo)) —  (5)
(1/2°7)(] A)(| (A, T),(4,0), Lo)+ | (A, T), Lo)+ | (4,0), Lo)) +

(I A+ [ B)) | Lo)+ | B)(| (B, T),(B,0), Lo)+ | (B,T), Lo)+ | (B,0), Lo)))

It is easy to check that after J doubling times, there will be 27 —1 each of the
distinctly labeled A and B sub-branches as well as a component of the original
form (| A> + | B >) | L, >. Whether this latter component is to be considered
one or two sub-branches, i.e. whether subsequent interference between | A >



and | B > is possible, becomes irrelevant as it becomes exponentially out-
numbered by macroscopically distinct sub-branches. Since the fundamental
postulate is that each sub-branch has equal probability, the probability of such
a macroscopic superposition falls to zero exponentially in time, while the two
distinct macroscopic outcomes remain equally likely.

Now let the initial state have 2/3 of its measure along A and 1/3 along B.
We choose g=1.5 to set t=0 as the time of the first branching, which occurs only
for A. Subsequent branching is again simultaneous for A and B. We obtain the
following sequence of normalized states, in which the notation Ly (shared by all
these sub-branches) has been suppressed in all the new branches, for brevity:

/31222 | A) + | B) | Lo) —

1/3Y2)(1 4) [ (A,0)) + (| 4) + [ B)) | Lo)) — (6)
1/6Y2)(1 A)(| (A,T), (A, 0))+ | (A, 1)+ (4,0))) +

| A+ 1 B) | Lo)+ | B) | (B,T)))

It is easy to check that after another (J-1) doublings, there will be (27/+! —1)
pure-A sub-branches with distinct labels, (27 — 1) pure-B sub-branches with
distinct labels, and one state component of the form (| A > + | B >) | L, > . If
one considers this component as consisting of one A and one B sub-branch, the
ratio of the number of A to B sub-branches becomes exactly two. Again, even if
one does not a priori rule out macroscopic superpositions as possible outcomes,
the probability of such a superposition falls to zero, as discussed above, and the
ratio of the numbers of A to B sub-branches approaches two, with the difference
from that limit decreasing exponentially in time.

The two examples above were contrived so that the branching along the
two pointer states occurred synchronously, by making the initial ratio of the
measures along those pointer states a power of two, matching the factor by
which the measure along a pointer state changes in the branching algorithm
with Z=1/2. For different initial ratios of the measures of those components,
the ratios of numbers of A andB sub-branches would oscillate as first the A
sub-branches, then the B sub-branches, bifurcated. The definition of the time-
averaged limiting ratio of the numbers of sub-branches of each type would then
be slightly arbitrary. That problem is an artifact of the choice Z=1/2, which
was employed only for illustrative simplicity, not on the basis of any real dy-
namical theory. For a more general bifurcating case, in which In(Z)/In(1-Z) is
irrational, synchronization becomes impossible since bifurcations can give rise
to new values of Mr’s, distinct from other sub-branches. In the more general
discussion which appears in a later section, I shall argue (on the basis of simu-
lations and of analytic arguments a bit short of a proof) for a conjecture that in
this case initial synchronization becomes unnecessary because the distribution of
Mr’s, of descendant sub-branches will spread and acquire a branch-independent
mean. Since the Mr’s, are simply standard measures scaled by a common time-
dependent factor, one obtains a branch independent ratio of number of sub-
branches on a branch to the standard measure of the branch, with vanishing
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fluctuations around that limiting ratio.

We next give an example of the emergence of standard probabilities when the
macroscopic branches are spread out over different numbers of pointer states.
For example, let us suppose that the pointer states ¢, are minimum-uncertainty
Gaussian states of a single particle spread over regions with width w, in analogy
with the GRW collapse picture. [19] Now let piece A initially have 2/3 of the
measure and have a Gaussian spread with a width of 400w, and piece B have
of 1/3 of the measure with a width of 100w. The pointer states here are uni-
formly distributed in three-dimensional real-space, so (with the above choices of
widths) A is spread over 64 times as many pointer states, and hence (with those
choices of measure) has 275 as much measure on each pointer state. Therefore
its anomalous branching will begin later than the anomalous branching of the
B components by a time 5T. Thus at a particular part of the Gaussian distribu-
tion (e.g. at the peak, or at the shell one standard deviation from the peak) the
components of B along each pointer state will split into 32 sub-branches before
the corresponding components of A also start to branch. However, A is dis-
tributed along 64 times as many pointer states. Therefore the total number of
A sub-branches becomes just twice the number of B sub-branches, as expected
from their measures, despite the asymmetry between their spatial distributions.

We have seen examples in which the standard probabilities emerge when
ordinary quantum rates of spreading between pointer states are negligible com-
pared to the anomalous branching rates. Except for the issue that the ra-
tio of the numbers of sub-branches on two branches can oscillate, the basic
procedure did not depend on special features of the initial states. However,
those probabilities are not just built-in by fiat, but rather arise by dynamics. In
fact, immediately after a “measurement” process, i.e the development by or-
dinary quantum dynamics of a state with substantial projections on distinct
pointer sub-spaces, non-standard probabilities would appear transiently before
the anomalous branching has occurred many times.

Now we can consider the effect of the standard quantum dynamics on the
probabilities. The examples will show that the branching algorithm is not guar-
anteed to produce standard quantum probabilities when applied to an isolated
microscopic system (for which the rate at which quantum dynamics spreads
the state out over different pointer sub-spaces is not negligible compared to the
anomalous branching rate), but that once enough particles are coupled to form
a macroscopic system, ordinary probabilities emerge.

Let us say that the state representing a particle with mass m, with pointer-
state growth-rate parameter 1/7y, has just split at t=0 into (among others) a
piece which initially lies along one of the minimum uncertainty pointer states,
with Mp = 1/2. The velocity spread /(2wm) will give an increase with time
of the number of pointer states over which the resulting state is spread, with
the maximum measure along the initial state decreasing as a result. Then the
maximum Mr will be M(t) = exp(t/r1)(14(t/t0)?)~3/2 /2, where to ~ w?m/h.
If 1 > to, Mp(t) will not reach one again until ¢ = 7 (In(2) + 3in(t/ty)) =~
371in(m1/70). The normal dynamics then delay the time for the anomalous
branching by a factor of approximately 3in(7i/to). If we use GRW parameters



for a proton, i.e. rate 1/71 = 10716571 and width w= 107° cm we find to ~
10~ 7s, and the logarithmic factor 3In(r /ty) would be about 150.

This example illustrates several points. First, a sufficiently small expo-
nential growth rate for single-particle pointer operators, like the small GRW
single-particle decoherence rate [19], allows the standard quantum dynamics to
proceed uninterrupted for a very long time. In fact, in this model (unlike the
GRW model, which has Poisson collapse statistics [19]) the reduction of the
sub-branch measure by a branching event actually shuts down the anomalous
process for a long time subsequently, so that the branching events are separated
by intervals longer than 71. However, the spreading from the pointer states
due to the uncertainty-principle (or more generally, the non-commutivity of the
pointer operators with the Hamiltonian, H) means that each sub-branch spreads
out over many pointer states before the next anomalous branching. As a result,
the anomalous branching process would not fix the mean sub-branch measure
independently of the quantum dynamics, which can differ among branches.

In this single-particle example, the measure which starts on a single pointer
state after an anomalous branching spreads out over a very large number, about
(71/t0)® = 1070, of pointer states before the next round of anomalous branching
starts. Therefore, if one were to assign probabilities of the particle being in
different locations by counting sub-branches in this isolated microscopic system,
those probabilities would not be proportional to the square of the wave-function.
For example, after about half of this state has undergone another splitting,
half the measure would be represented by some 107° sub-branches covering the
spatial middle part of the state, while the half of the measure contained in the
outer parts would be represented by only one sub-branch.

In the example above the deviations from the standard probabilities are
quite striking in an isolated microscopic system, although any assignment of
probabilities would make little sense on a short time scale, for which there is
no stable ratio of numbers of sub-branches representing different outcomes. As
most discussions of quantum measurement routinely point out, measurements
can never be made on isolated microscopic systems, because any measurement
for which we can possibly have tabulated probabilities requires that correlations
be established with macroscopic variables, at least including ones describing our
brains. Thus the requirement for a successful theory (assuming no special role
for consciousness) is that it predict the standard probabilities for a large class
of macroscopic systems, to which we now turn for further examples.

First, consider a particle of larger mass. The spreading time ¢y for the
simple Gaussian pointer states scales linearly with m. Thus, even if 7 were
m-independent, a more massive particle would have 7 < ty for m > 0.1g =
(71/t0)1072*g. Within the explicit collapse framework, it has been noted that
experimental constraints indicate that the anomalous decoherence rate should
increase with rest mass. [8, 9, 10] If, for example, 1/7 were to scale as m, the
massive particle would have 7 < to for m > 10712g.

Thus for sufficiently massive particles, regardless of how the quantum pro-
cess had dispersed the wave-function, measure-proportional probabilities would
emerge. If 1/1/7 were proportional to m, branching times would fall to less
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than one microsecond for m > 0.1g.

5 Multi-particle systems

Now we consider a system of N particles, which for simplicity we make dis-
tinguishable. The model should allow branching to occur for any one particle
without affecting the others, so that for uncorrelated particles the branching
will not create spurious correlations. Therefore each pointer operator should be
a product of a pointer operator for one particle by identity operators for the
other N-1, e.g. Pirls...IxN. Each pointer operator then projects not to a state
of the overall system, but instead to a higher-dimensional sub-space. The iden-
tity operators for the other particles apply to both the standard Hilbert space
and to the space represented by the corresponding labels. We shall assume that
these pointer operators are also appropriate for correlated multi-particle states.
The formalism is close enough to that of GRW [19] to not require repetition in
detail.

Let us consider a crystal in its internal ground state, so that only the center-
of-mass coordinate remains free. Assume that the masses of the (distinguish-
able) particles are all still m, and the pointer operators each still have an ex-
ponential growth rate 1/71. The spreading time toy would be the same as for
any other particle of mass Nm, i.e. Ntyg. Now as soon as any particle’s state
branches, the center of mass coordinate of the crystal is localized to within dis-
tance w on each new sub-branch, just as in the GRW theory. [19] After Np
repeated branching events most sub-branches are localized to within w/N;/ 2
as is the unique state in the analogous collapse process in GRW.

The crucial question then becomes how long it takes for anomalous branching
to occur in this multi-particle collective state. The key point is that since the
N particles arrived in the crystal through partially independent histories, the
timings of the cyclings of their My between branching events are not the same.
For long enough and complicated enough histories, one expects these timings
to be uncorrelated. Therefore the logarithms of those Mt (on any one of the
allowed product states) are randomly distributed, e.g. from -In(2) to 0 if we
follow algorithm (2) with Z=1/2 and if Nt; >> 71/N. Branching events can
occur at any time, with the typical time delay between branching events reduced
by a factor of N compared to the single-particle rate.

Here our procedure is different from GRW [19] in an important way (in
addition, of course, to the interpretation that only branching, not collapse,
is occurring). The randomness in the timing of the branching events is not
put in as a separate fundamental ingredient here. Rather, it arises from the
complicated but deterministic histories of the constituent particles. In other
words, it is an ordinary statistical mechanical effect, not an essential randomness
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in the constituent dynamics.
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6 More General Considerations

I have illustrated how non-linear decoherence effects can give standard quantum
probabilities via outcome counting using a toy version of the non-linear dynam-
ics, applied to simple cases. Although I am unable to develop a full theory of
respectable non-linear dynamics, it is nonetheless possible to discuss some of
the constraints on such a theory and to clarify why the non-linear procedure
above produced correct probabilities in the examples given. The key points in
the dynamics leading to the measure-proportional probabilities are that:

I. The anomalous sub-branching does not change the net measure on any
branch.

IT. A steady-state is approached in which the mean value of the measures of
the sub-branches of a given branch is independent of the branch.

If these two conditions are met, then the sub-branch numbers must be pro-
portional to branch measure.

The condition (I) is assumed to apply exactly to the anomalous branching,
as in algorithm (2). The general form of the anomalous branching rate, a mono-
tonically increasing function of Mr, will tend to cause condition (II) to be met
approximately, but it will be met precisely only under further constraints.

Let us first consider the case in which the ordinary quantum dynamics can
be ignored. The measures of the sub-branches of the different branches became
precisely equal at all times in our simplest (Z=1/2) examples only because of the
specially contrived initial measures. In general, to insure that the average over
equally weighted sub-branches of Mr (denoted < Mr >¢) approach the same
limiting values on different branches, one needs that < Mr >¢ approaches the
mean of a limiting steady-state distribution. I conjecture that that will occur
whenever In(Z)/In(1-Z) is irrational.

There is an informal argument for the conjecture above. The branching
algorithm together with the pointer-operator growth implies that after time t,
the log of the measure of each sub-branch will have to be reduced by ¢/7 to
within an accuracy of max (| in(Z) |,| In(1 — Z) |). The reduction occurs in
steps of In(Z) and In(1-Z) The number of ways that ¢/7 can be put together (to
the specified accuracy) out of combinations of the form (Jzin(Z)+ Ji_zIn(1 —
7)) with positive integer J’s is of order ¢/7. Each such combination leads to a
different sub-branch measure, a set of pseudo-random numbers. Although at
finite time the probability density function p(Mr) of the set of Myp’s is always a
finite collection of delta functions, it seems likely that its moments will approach
those of a distribution which is time-independent under the branching algorithm.
(It is not too hard to demonstrate that for rational In(Z)/In(1-Z)= m/n, in
reduced rational form, the distribution of the number of Mr’s in n uniformly
spaced logarithmic bins from In(Z) to 0 approaches a unique limit, implying
that < Mp >¢ becomes fixed to within a factor of Z'/". Formally taking a
suitable limit to obtain the fixed-mean result for irrational In(Z)/In(1-Z) does
not seem to be trivial.)

The time-independent distribution for the bifurcation scheme can fairly eas-
ily be shown to be:
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where Z' = min(Z, 1-Z). For this limiting distribution < Mp >¢ will be
ZIn(1/Z)+(1-Z)In(1/(1-Z)). For some more general branching scheme, so long
as the moments approach those of any well-defined distribution, condition II
will be met.

One can run simulations of the branching algorithm to see if the moments
do actually converge to the ones predicted from distribution (7). Simulations
with In(Z)/In(1-Z)= (1+5/2)/2 were run to times of t=80007. < Mr >¢
showed irregular fluctuations as a function of t, around the limit calculated from
distribution (7). The envelope of the fluctuations was a decreasing function of
t, with | Aln < Mt >¢| staying under 0.03 for 257 < ¢ <80007, under 0.015
for 1507 < ¢ <80007, and under 0.003 for 43007 < ¢ <80007. (Slightly quicker
simulations of |< AlnMp >¢|, nearly identical to | Aln < Mp >¢| for t > 107,
extended these limits to 135007.) The simulation results are consistent with the
plausible hypothesis that the deviations of < My >¢ from its limiting mean
scale as (t/7)71/2.

The key issue determining whether condition IT (branch-independent
< Mr >¢) is met is not the mathematical exercise required to show a limiting
< Mr >¢ in a given branching algorithm, but rather what the effects are of
including ordinary quantum dynamics. Given that events happen, the pointer
operators cannot commute with H, so that even if a sub-branch starts out with
a well-defined value of a pointer operator, it will not keep it.

I have argued that a pure branching dynamics of the type described will give
a distribution of M1 whose mean is independent of the initial state. The mean
of the sub-branch measures on each branch will approach e~ */7) < My >¢
so long as the ordinary quantum processes have little effect on the anomalous
branching. That requires that a sub-branch which starts off as an eigenstate of
some Pr spreads very little outside the I' subspace before the next anomalous
branching. Starting in an eigenstate of Pr, the first derivative of the measure
of the projection of the state onto the I' subspace will be zero. The second
derivative will be negative and will depend on the commutator [Pr, H] of the
pointer operator Pr with H. We then require:

L (®r|[Pr H]H | ¥r)
ST n(er | P | @r)

where 1/7.55 is the effective anomalous branching rate for the system. As
discussed in the toy example, there is reason to expect that for macroscopic
objects 1/7.;; would scale linearly with the size of the system. [7, 19] An
essentially similar condition was found by GRW [19] as a requirement for the
existence of classical trajectories in collapse pictures with stochastic ingredients

<1 (8)
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in the dynamics. Although we are far from having a suitable general choice of
pointer operators, quantum commutators of operators representing measurables,
e.g. [P,H], generally become relatively unimportant for large systems. It is then
plausible that condition (8) will be met by macroscopic systems in general.

7 Remaining problems and prospects

We have seen that in a toy model correct quantum behavior is retained for
small enough objects, while for large objects the probabilities obtained from
outcome-counting approach values proportional to quantum measure. The es-
sential features of that toy model seem likely to generalize. Nevertheless, this
proposal is obviously in an early stage, with some elements directly borrowed
from the GRW stochastic collapse proposal. [19] Most importantly, nothing here
contributes anything new to the understanding of the pointer operators and the
branching rates, or to making a continuous-time description of the branching
process itself.

The pointer operators for multi-particle systems employed here were con-
structed to avoid having the anomalous branching induce any spurious correla-
tions on independent particles. In simple examples with the quantum state of
the system in the opposite limit, i.e. the zero-temperature crystal, the branching
algorithm then also gave a reasonable results. I have not provided an analy-
sis of the behavior of partially correlated particles. A proper description for
collections of identical particles also has not been given here.

In the artificial model constructed here to show that a no-collapse picture
can produce correct measure-proportional macroscopic probabilities, I have built
up pointer operators out of single-particle operators. That procedure is easy,
but it lacks a strong physical motivation and is very unlikely to be suitable in
general. A more developed theory obviously should not be expressed in terms of
individual particle states or any other decomposition which becomes arbitrary
in a general case. Perhaps a more suitable set of pointer operators would depend
on four-momentum density without reference to constituents, along lines being
pursued in collapse pictures. [8] Construction of such a model is well beyond
my capabilities.

The growth rates of the pointer operators ought to be expressed by some
operator which transforms with other physical rates if a relativistic theory is
to be obtained. The indications of rest-mass dependence of the collapse rate in
collapse interpretations [8, 9, 10] suggest that the growth rate 1/7 for a given
Pr could be replaced by an operator eH/h where € is a small positive number
and H is understood to be the full Hamiltonian (i.e. whatever appears in the
gravitational source term, typically dominated by the rest-mass term) for the
particular subsystem on which Pr acts. If the anomalous branching rate for
single particles is to fall within the rather broad range of postulated rates in
collapse theories [8, 19], we would need 10750 < € < 10749,

A non-uniform 7 of this type would have some interesting, problematic con-
sequences. The branching rate would be higher on high-energy components
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than on low-energy ones. Although that difference would in itself have no di-
rect effect on Tr(pH) where p is the global density matrix, it would lead to
an increase in the relative numbers of high-energy sub-branches, giving a term
€ < (§H)? >¢ /h in the rate of increase of < H >¢, where <>¢ again denotes
averaging over equal-weighted sub-branches. This effect is smaller than the di-
rect energy non-conservation predicted to arise from explicit collapse processes
[9, 19] (an effect perhaps shared with the branching processes), and would lead
to no significant anomalies over many times the current lifetime of the universe.
For any collection of independent subsystems, the rate of energy increase would
come out to be the sum of the subsystem rates. Intriguing problems would
arise for the description of subsystems in a closed universe whose net energy
was identically zero.

8 Conclusion: comparison with related ideas and
observational constraints

The proposal is clearly mathematically and observationally distinct from prior
many-worlds pictures, which lack the prediction of anomalous loss of interfer-
ence. Ultimately, the parameters (e.g. €) fixing the rate of anomalous interfer-
ence loss should be measurable in mesoscopic experiments if either the collapse
approach or this approach is correct. I shall argue that the non-linear many-
worlds approach may have subtle observational differences from the family of
explicit collapse pictures which share the prediction of anomalous decoherence.

The standard quantum probabilities here emerge under some limiting condi-
tions. There is a regime, illustrated in our toy examples, in which it is meaning-
ful to use outcome-counting to assign probabilities which are not proportional
to measure. However, the standard quantum mechanical probabilities would re-
sult for observations on a time scale large compared to the effective anomalous
branching rate, so long as the commutators of the pointer operators and the
Hamiltonian are small enough, i.e so long as condition (8) is met.

Given that as observers we are intrinsically limited to the size-time scale
on which experiments in the past have always given Born probabilities, the
most reasonable hope for finding different predictions would be to find some
experiment in which the commutators of the relevant pointer operators and the
Hamiltonian were large, so that condition (8) would be violated. That would
require some way of arranging for the state to maintain a rapid decrease in the
log of the maximum measure along any pointer sub-space simply due to ordinary
quantum dynamics. That decrease would have to be unequal between different
macro-outcomes and would have to be maintained over the entire course of the
experiment. That leaves (slightly) open both the unpleasant possibility that in
a more developed theory some case could show probabilities already so far from
known observations as to rule out this approach and the pleasant possibility
that some case might predict probabilities subtly but measurably distinct not
only from standard quantum mechanics (which lacks the anomalous interference
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loss) but also from the explicit collapse pictures.

It may seem that an approach which invokes non-linearity without getting
rid of many worlds has combined the worst features of two types of theory. How-
ever, the acceptance of non-linearity seems to be a necessity if one is to obtain
the correct probabilities from the dynamical equations. The choice between
many-worlds and collapse is not dictated by any known observation. By not
insisting on unique outcomes, we avoid some of the ingredients of the collapse
models which seem most distinct from ordinary quantum mechanics, partially
compensating for the currently less-developed state of the no-collapse approach.
Non-quantized fields, hypotheses about constructs outside the dynamical equa-
tions, and explicit stochastic constituents are all avoided, as hoped for in early
versions of many-worlds pictures. [11] As Squires noted, [22] dropping the col-
lapse hypothesis also avoids the problem of requiring prior non-local correlations
in random collapse-generating fields. Any no-collapse picture, including this one,
avoids postulating unobserved state-reduction, although at the obvious cost of
postulating state-components unobserved by a given macroscopic observer.

Of course, if one or the other non-linear approach is found to flow in a natural
way from a deeper understanding of constituent physics (e.g. gravity), no such
mere postulates will be required. On the other hand, if a full, consistent theory
of all observed interactions were found to have the form of a linear quantum
field theory, then both approaches might be left with the need for some highly
arbitrary assumptions, without prospects of confirmation from another line of
reasoning.

Proposals which simply add the usual probability rule to a purely linear
dynamics cannot distinguish in principle whether a single-world [23] or multi-
world [16] interpretation is correct. Likewise, the Bohm interpretation [24] is
unable in principle to distinguish if there is one “real” coordinate point guided
by the wave or an ensemble of such points, since the actual coordinates have
no effect on the linear evolution of the wave. In contrast, I have pointed to a
route by which the non-standard collapse and non-standard no-collapse pictures
might conceivably be distinguished.

The point has been made before that proposed experimental tests designed
to distinguish explicit collapse models from standard quantum mechanics would
determine only whether an additional source of interference loss exists, not
whether all but one of the resulting components of the state disappear. [10] This
point is not a mere formality, because a non-linear no-collapse account may give
a straightforward mechanism for directly explaining quantum probabilities in
terms of simple numbers of non-interfering outcomes arising directly from the
dynamics, without postulating any stochastic non-quantized fields.
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