Trans-Dimensional Bayesian Inference for Gravitational Lens Substructures

Brendon J. Brewer¹*, David Huijser¹, Geraint F. Lewis²

¹Department of Statistics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
²Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney, NSW 2006, Australia

ABSTRACT
We introduce a Bayesian solution to the problem of inferring the density profile of strong gravitational lenses when the lens galaxy may contain multiple dark or faint substructures. The source and lens models are based on a superposition of an unknown number of non-negative basis functions (or “blobs”) whose form was chosen with speed as a primary criterion. The prior distribution for the blobs’ properties is specified hierarchically, so the mass function of substructures is a natural output of the method. We use reversible jump Markov Chain Monte Carlo (MCMC) within Diffusive Nested Sampling (DNS) to sample the posterior distribution and evaluate the marginal likelihood of the model, including the summation over the unknown number of blobs in the source and the lens. We demonstrate the method on two simulated data sets: one with a single substructure, and one with ten. We also apply the method to the g-band image of the “Cosmic Horseshoe” system, and find evidence for more than zero substructures. However, these have large spatial extent and probably only point to misspecifications in the model (such as the shape of the smooth lens component or the point spread function), which are difficult to guard against in full generality.

Key words: gravitational lensing: strong — methods: data analysis — methods: statistical

1 INTRODUCTION

Galaxy-galaxy gravitational lensing is a powerful astrophysical tool for studying the distribution of matter, including dark matter, in galaxies (Treu 2010). One promising application of lensing is to study and measure the properties of dark matter substructures in the lens galaxy (Koopmans 2005). In recent years, this promise has been realised in several lens systems which are thought to contain at least one dark substructure (Vegetti et al. 2012, 2010; Vegetti, Czoske, & Koopmans 2010). In these studies, the lens was modelled as a superposition of a smooth component (such as an elliptical power-law matter distribution) plus a pixelized “non-parametric” correction term. The estimated spatial structure of the correction term provides clues about the locations of possible substructures. In a second modelling step, the lens is assumed to be a smooth overall component plus a compact “blob” near any locations suggested by the correction term. This kind of inference has also been done with point-like multiple images of quasars (Fadely & Keeton 2012).

In this paper, we introduce an approach for solving this same problem (inferring the number and properties of dark substructures given an image) in a more direct fashion, by fitting a model with an unknown number of substructures directly to the image data. However, with appropriate modifications, it may also prove useful in other galaxy-galaxy lens modelling areas. One example is time-delay cosmography, which requires realistically flexible lens models, and reliable quantification of the uncertainties (Suyu et al. 2013, 2014; Grillo et al. 2015).

Lens modelling has been a topic of much interest over the last two decades. Most approaches are based on Bayesian inference (Sivia & Skilling 2006; O’Hagan and Forster 2004), maximum likelihood (Millar 2011) or variations thereof. These approaches may be categorized according to the following criteria:

(i) Whether to use a simply parameterized (e.g. a Sérsic profile), moderately flexible (e.g. a mixture model, Brewer et al. 2011) or free-form (e.g. pixellated) model for the surface brightness profile of the source;

(ii) Whether to use a simply parameterized (e.g. Singular Isothermal Ellipsoid [SIE]) or flexible model (e.g. pixellated) for the mass profile of the lens; and

(iii) How to compute the results (e.g. optimization meth-
ods, Markov Chain Monte Carlo [MCMC] with source parameters marginalized out analytically, or MCMC with the source parameters included).

Recent sophisticated approaches investigating different prior assumptions and computational approaches include Coles, Read, & Saha (2014), Tagore & Jackson (2015), and Birrer, Amara, & Refregier (2015).

Each approach involves tradeoffs between convenience and realism. Simply parameterized models, such as Sérsic surface brightness profiles for the source, and singular isothermal ellipsoid plus external shear (SIE+) models for the lens (Kormann, Schneider, & Bartelmann 1994), are very convenient. They only have a few adjustable parameters, and they capture (to “first order”) relevant prior information that we have about the source and lens profiles. Of course, they are clearly simplifications, and can produce misleading results if the actual profile is very different from any member of the assumed family.

On the other hand, pixellated models for the source (e.g. Suyu et al. 2006) or the lens (e.g. Coles, Read, & Saha 2014) can in principle represent “any” source surface brightness profile or lens projected density profile. However, the prior distribution over pixel values is often chosen to be a multivariate gaussian for mathematical reasons, so that the source can be analytically marginalized out (Warren & Dye 2003). Unfortunately, a multivariate gaussian prior over pixel intensities usually corresponds to a poor model of our prior beliefs about the source. It assigns virtually zero prior probability to the hypothesis that the source actually looks like a galaxy, and very high prior probability to the hypothesis that the source looks like noise (or blurred noise). These priors also assign nonzero probability to negative surface brightness or density values; in fact, the marginal prior probability that any pixel is negative is typically 0.5.

Brewer et al. (2011) argued that an ideal modelling approach lies somewhere between simply-parameterised and pixellated models, which is also a motivation behind the investigation of shapelets by Tagore & Jackson (2015). One way of achieving this is with mixture models. The source and the lens can be built up from a mixture of a moderate number (from a few to a few hundred) of simply parameterised components. For the source, this allows us to incorporate prior knowledge about the local correlations (the surface brightness at any particular point is likely to be similar to that at a nearby point) and the fact that most of the sky is dark (Brewer & Lewis 2006). The Brewer et al. (2011) model also allowed for multi-band data, and allowed for our expectation that the image may or may not be similar in different bands.

The present paper is similar in approach to Brewer et al. (2011). The main differences are: i) we use a simpler and faster set of basis functions; ii) we apply it to the lens as well as the source, allowing for the possibility of substructure; and iii) the implementation is based on a C++ template library developed by Brewer (2014) which allows for hierarchical priors and trans-dimensional MCMC to be implemented in a relatively straightforward manner. However, in the present paper we do not account for multi-band data; this will be reserved for a future contribution. The source code for this project is available at http://www.github.com/eggplantbren/Lensing2

If we are interested in detecting and measuring the properties of possible dark substructures in a lens galaxy, a superposition of an unknown number of “blobs” is the most natural model. In addition, if we want to constrain the mass function of these blobs (e.g. Vegetti & Koopmans 2009, Vegetti et al. 2014), we will need a hierarchical model which specifies the prior probability distribution for the masses conditional on some hyperparameters. Inferring the mass function of the blobs then reduces to calculating the posterior distribution for the hyperparameters. This is related to the general principle that we should (ideally) construct our inference methods so that the quantities we infer directly answer our scientific questions (Alsing et al. 2015, Schneider et al. 2015, Pancoast, Brewer, & Treu 2011). Here, we are referring to the mass function of the substructures within a single lens galaxy. An additional level of hierarchy would be needed to answer questions about a sample of lens galaxies.

2 THE MODEL

We now describe the details of our model and its parameterization. The motivation for most of our modelling choices is a compromise between computational efficiency, realism, and ease of implementation. None of the choices we have made are final in any sense; rather, this model should be considered a proof of concept. We encourage exploration of other choices. Since we can compute marginal likelihoods, Bayesian model comparison between our choices here and any proposed alternatives should be straightforward, if a union of our hypothesis space and another can be considered a reasonable model of prior uncertainty.

2.1 The Source

The surface brightness profile of the source is assumed to be composed of a sum of a finite number of “blobs”, or basis functions, in order to allow some flexibility while incorporating prior information about the non-negativity of surface brightness, and the spatial correlation expected in real surface brightness profiles. For computational speed, we choose the following functional form for the surface brightness profile of a single blob centered at the origin:

$$f(x, y) = \begin{cases} \frac{2A}{r w^2} \left(1 - \frac{r^2}{w^2}\right), & r \leq w \\ 0, & \text{otherwise} \end{cases}$$

where $r = \sqrt{x^2 + y^2}$, $w$ is the width of the blob, and $A$ is the total flux of the blob (i.e. the integral of the surface brightness over the entire domain). These basis functions are inverted paraboloids, which are faster to evaluate than gaussians, since they do not contain an exponential function. In addition, the finite support means that each blob will evaluate to zero over a large fraction of the domain which confers an additional speed advantage. More conventional choices such as gaussians are possible, as are alternative compact basis functions, perhaps inspired by the smoothed particle hydrodynamics literature (Dehnen & Aly 2012). Alternative choices, such as Sérsic profiles, may be more realistic despite their computational cost. This is especially likely in the case of an early-type source galaxy (e.g. Auger et
\[ \rho(x, y) = \begin{cases} \frac{2M}{\pi v^2} \left( 1 - \frac{r^2}{v^2} \right), & r \leq v \\ 0, & \text{otherwise} \end{cases} \] (5)

where \( r = \sqrt{x^2 + y^2} \). These do not depend on any computationally expensive functions such as square roots or exponentials. For \( N \) such blobs the deflection angles are summed over all blobs. Therefore the lens can be entirely described by the following parameters:

\[ \left\{ \theta_{\text{SIE}}, N_{\text{arc}}, \left\{ \theta_{\text{lens}}^{\text{src}} \right\}_{i=1}^N \right\} \] (8)

where \( \theta_{\text{lens}}^{\text{src}} \) denotes the parameters for source blob \( i \):

\[ \theta_{\text{lens}}^{\text{src}} = \left\{ x_i, y_i, A_i, w_i \right\}. \] (4)

The dimensionality of the parameter space for the source depends on the minimum and maximum values of \( N_{\text{arc}} \), which we set to 0 and 100 respectively (more detail about priors is given in Section 3). Therefore the source is described by \( 1 \approx 401 \) parameters.

### 3. Prior Probability Distributions

The prior probability distributions for all hyperparameters, parameters, and the data, are given in Table 1 and a factorization of the joint distribution is displayed in Figure 1. With these priors, we aim to express a large degree of prior uncertainty (hence the liberal use of uniform, log-uniform, and Cauchy distributions). However, we also specify some priors hierarchically to allow (for example) blobs to cluster around a typical central position, rather than implying a high probability for substructure positions being spread uniformly (in a frequency sense) over the sky. We also applied hierarchical priors to the substructure masses (and source fluxes) so that, while the typical order of magnitude of the...
masses is unknown, the masses themselves are likely to be roughly the same order of magnitude. The hyperparameters of these distributions can also be interpreted as straightforward answers to questions about the substructure mass function.

We assign somewhat informative (but heavy-tailed) Cauchy priors to the central positions of the source and the lens. One might object to the Cauchy priors for the central positions (and argue instead for gaussians) on the basis that they do not have rotational symmetry. However, the priors we are assigning are prior only to the values of the data pixel intensities only, and not other facts about the data, such as its dimensions in arc seconds, or its rectangular shape. Given these, there is no reason to insist on rotational symmetry. The Cauchy priors are intended to enhance the plausibility of these distributions can also be interpreted as straight-

forward answers to questions about the substructure mass function.

The “circular” conditional prior for the blob positions has the following density:

\[ \rho(x, y) \, dx \, dy = \frac{1}{2\pi W} \frac{1}{r} \exp \left( -\frac{r}{W} \right) \, dx \, dy \] (11)

where \( r = \sqrt{(x - x_c)^2 + (y - y_c)^2} \). This results from an exponential distribution (with expectation \( W \)) for the radial coordinate and a uniform distribution for the angular coordinate in plane polar coordinates. This was chosen (as opposed to a more “obvious” choice such as a normal distribution) for computational reasons: the \texttt{RJObject} code requires a function to transform from Uniform(0, 1) distributions to this distribution and back (making use of cumulative distribution functions and their inverses), and the normal would have required the use of special functions for this.

3.1 Conditional prior for the data

The conditional prior for the data given the parameters is a product of independent gaussian distributions, one for each pixel. The mean of the gaussian is given by the “mock” noise-free image we would expect based on the parameters. The standard deviation of the gaussian is a combination of three terms; the first (denoted \( s_{ij} \)) is a “noise map” which is loaded from a file, the second is an unknown constant \( \sigma_0 \) which applies to the whole image, and the third is proportional to the square root of the mock image, with proportionality constant \( \sigma_1 \).

This is usually called the “sampling distribution”, or sometimes just the “likelihood”. However, sampling distribution is misleading since no physical frequency distribution exists which is being sampled from. The term likelihood is also usually used to refer to the scalar function of the parameters obtained when the data are known. For a discussion of the view that this object is really a prior distribution, see Caticha (2008 pp. 33–35).

It is common to provide a “variance image” to lens modelling software, which specifies the standard deviations used in the likelihood function. However, telescopes do not provide variance images. It also does not make sense to specify vague priors prior to the image pixel values but posterior to the variance image (which usually resembles the image itself, and therefore would be highly informative). Allowing the standard deviation of the gaussian in the likelihood to depend on the mock image brightness is a more principled way of modelling our actual inferential situation. Nevertheless, we allow for an input variance image as well, which can be used for ad-hoc masking of troublesome regions (such as unmodelled flux from other sources).

4 COMPUTATION

Computing the posterior distribution over the parameters of such a model requires that we can implement Markov Chain Monte Carlo (MCMC) over the space of possible sources and lenses. To compute the posterior distribution for the parameters (of which there are 24–464, depending on the values of \( N_{\text{src}} \) and \( N_{\text{lens}} \)), we use Diffusive Nested Sampling (Brewer, Partay, & Csányi 2011), a form of Nested Sampling (Skilling 2006) that uses the Metropolis algorithm to move around the parameter space.

The proposal distributions for the blob parameters (both source and lens) are handled by the \texttt{RJObject} library Brewer (2014). This includes birth and death proposals that increase or decrease either \( N_{\text{src}} \), or \( N_{\text{lens}} \), as well as proposals that move the blobs (in their parameter space) while keeping the number of blobs fixed. \texttt{RJObject} also facilitates proposals that change the hyperparameters (either for the lens or the source) while keeping the actual blobs in place, as well as proposals that change the hyperparameters and shift all of the relevant blobs in so they are appropriate for the new values of the hyperparameters.

Evaluating the likelihood function requires that we compute a “mock” image from the current setting of the parameters. This mock image is calculated using standard ray-tracing methods with a uniform grid of \( n \times n \) rays fired per image pixel. However, certain kinds of proposals do not affect the image in any way, such as those which change the noise parameters. For efficiency we do not recompute the mock image in these cases.

5 “EASY” SIMULATED DATA

To demonstrate the method, we generated a simulated dataset where the lens was an SIE+\( \gamma \) profile with a single additional substructure. The image is shown in Figure 2 and consists of 100 × 100 pixels. The point spread function (PSF) was compact and was defined on a 5 × 5 grid. The data was created by firing only one ray per pixel, and the inference was also carried out under the same level of approximation. Since the model assumptions are all correct for this image, the demonstration here is purely to illustrate the computational tractability of the problem, and the kind of outputs the method can produce. The SIE+\( \gamma \) parameters were, to three significant figures, \( \{ b, q, x_{\text{SIE}}, y_{\text{SIE}}, \theta, \gamma, \theta_q \} = \{ 5.25, 0.323, 0.191, -0.341, 0.833, 0.0322, 0.497 \} \), where the length units in the image plane are arbitrary, and rotation angles are measured in radians. The single substructure is located at \((-2.57, 2.20)\), about halfway between the center and the upper left image. Its mass is 2.50 units, using the convention where the critical density is 1. For comparison, the SIE mass within its critical ellipse is \( \pi \theta^2 = 86.6 \) units.

We executed the code to generate 5,000 samples from the “mixture of constrained priors” distribution of DNS. Our
The computer was purchased in 2012 and has a second-generation Intel i7 processor, and the process was run on 8 threads.

\(^{1}\) The computer was purchased in 2012 and has a second-generation Intel i7 processor, and the process was run on 8 threads.

Table 1. The prior distribution for all hyperparameters, parameters, and the data, in our model. Uniform(a, b) is a uniform distribution between a and b. LogUniform(a, b) is a log-uniform distribution (with density \(f(x) \propto 1/x\), sometimes erroneously called a Jeffreys prior) between a and b. The notation \(T(\alpha, \beta)\) after a distribution denotes truncation to the interval \([\alpha, \beta]\). The constant \(\text{imageWidth}\) is the geometric mean of the image dimensions in the x and y directions.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Meaning</th>
<th>Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{\text{src}})</td>
<td>Number of source blobs</td>
<td>Uniform(0, 1, \ldots, 100)</td>
</tr>
<tr>
<td>(N_{\text{lens}})</td>
<td>Number of lens blobs</td>
<td>Uniform(0, 1, \ldots, 10)</td>
</tr>
</tbody>
</table>

**Source hyperparameters (\(\alpha_{\text{src}}\))**

- \((x_{\text{src}}^{i}, y_{\text{src}}^{i})\): Typical position of source blobs
- \(R_{\text{src}}\): Typical distance of blobs from \((x_{\text{src}}^{i}, y_{\text{src}}^{i})\)
- \(\mu_{\text{src}}\): Typical flux of source blobs
- \(W_{\text{src}}^{\text{max}}\): Maximum width of source blobs
- \(W_{\text{src}}^{\text{min}}\): Minimum width of source blobs

**Lens hyperparameters (\(\alpha_{\text{lens}}\))**

- \((x_{\text{lens}}^{i}, y_{\text{lens}}^{i})\): Typical position of lens blobs
- \(R_{\text{lens}}\): Typical distance of blobs from \((x_{\text{lens}}^{i}, y_{\text{lens}}^{i})\)
- \(\mu_{\text{lens}}\): Typical mass of lens blobs
- \(W_{\text{lens}}^{\text{max}}\): Maximum width of lens blobs
- \(W_{\text{lens}}^{\text{min}}\): Minimum width of lens blobs

**Source Blob Parameters (\(\theta_{\text{src}}^{i}\))**

- \((x_{\text{src}}^{i}, y_{\text{src}}^{i})\): Blob position
- \(A_{i}\): Blob flux
- \(w_{i}\): Blob width

**Lens Blob Parameters (\(\theta_{\text{lens}}^{i}\))**

- \((x_{\text{lens}}^{i}, y_{\text{lens}}^{i})\): Blob position
- \(M_{i}\): Blob mass
- \(v_{i}\): Blob width

**Smooth Lens Parameters (\(\theta_{\text{SIE}}\))**

- \(b\): SIE Einstein Radius
- \(q\): Axis ratio
- \((x_{\text{SIE}}, y_{\text{SIE}})\): Central position
- \(\theta\): Orientation angle
- \(\gamma\): External shear
- \(\theta_{\gamma}\): External shear angle

**Noise Parameters (\(\sigma\))**

- \(\sigma_{0}\): Constant component of noise variance
- \(\sigma_{1}\): Coefficient for variance increasing with flux

**Data (\(D\))**

- \(D_{ij}\): Pixel intensities

\[
D_{ij} \sim \text{Normal}(m_{ij}, \sigma_{ij}^{2} + \sigma_{0}^{2} + \sigma_{1}m_{ij})
\]

For the purposes of a paper, static summaries are more convenient than movies. One useful summary is based on the concept of empirical measure. The empirical measure of the substructure positions is a function that takes the actual substructure positions \((x_{i}^{\text{lens}}, y_{i}^{\text{lens}})\) and produces a “density function” over two dimensions, composed of delta functions.
Figure 1. A probabilistic graphical model (PGM) of the dependence structure of the prior information, produced using DAFT (www.daft-pgm.org). The prior for the source and lens blob parameters are specified conditional on hyperparameters. The purpose of this is to induce dependence in the prior distribution for the blob parameters, implying (for example) that the mass of one blob is slightly informative about the mass of another, and that the locations might be clustered around a certain typical location.

Intuitively, the empirical measure is a mathematical object that is like an “infinite resolution histogram”, in this case a two dimensional histogram, of the substructure positions. Being a function of the actual substructure positions, the empirical measure is not available to us since we do not know those positions with certainty. However, we have samples from the posterior distribution for those positions, and can use these (trivially) to create samples from the posterior distribution for the empirical measure. We can also summarise this posterior, for example, by taking its expected value.

The posterior expected value of the empirical measure is:

\[
\int p(\theta | D) \sum_{i=1}^{N_{\text{lens}}} \delta^2 \left( x - x_{\text{lens}}^i, y - y_{\text{lens}}^i \right) d\theta
\]

where \( \theta \) denotes all parameters and hyperparameters (including the \( N_s \)) and “\( \int d\theta \)” is an integral and summation over the entire parameter space.

Since we can approximate posterior expectations using Monte Carlo, we can obtain the expected value of the empirical measure using:

\[
\frac{1}{n} \sum_{k=1}^{n} \sum_{i=1}^{N_{\text{lens}}^k} \delta^2 \left( x - x_{\text{lens}}^{ik}, y - y_{\text{lens}}^{ik} \right)
\]

where \( n \) is the number of posterior samples. The resulting function is an “image” with a point mass wherever a substructure occurred. For visualisation purposes the image can be blurred, or calculated at a lower resolution by replacing...
the Dirac-delta function with a discrete version which returns a nonzero constant if a substructure appears in a pixel or zero otherwise.

The masses of the smooth and substructure components of the lens are usually of interest. Since the total mass of an SIE lens is infinite, the question needs to be redefined, so we ask about the mass within some aperture of finite area. For an SIE, the mass (in dimensionless units based on the critical density) within the critical ellipse is simply $\pi b^2$. However, the blobs have finite total masses $\{M_i\}$. To obtain the posterior distribution for the lens masses, one must be clear about exactly which mass they are talking about, and many definitions are possible, although some might be more meaningful or well constrained than others.

In the present paper we do not address the question of exactly which quantities related to the density profile of the lens are most scientifically interesting. Nevertheless, we can verify that the results of the inference do behave in understandable ways. For example, in Figure 3 we plot the joint posterior distribution for the SIE mass within its critical ellipse and the total substructure mass over the entire domain. As one would expect, there is a strong dependence between these two quantities in the posterior distribution, as mass in the SIE can be traded off with mass in substructures to some extent, while the model remains (loosely speaking) “consistent with the data”.

The posterior distribution for $N_{\text{lens}}$ is also clearly of interest, and is displayed in Figure 4. The prior for this parameter was uniform from 0 to 10 (inclusive), and the possibility $N = 0$ has been (loosely speaking) “ruled out” by the image data. The true solution ($N = 1$) has the highest probability. However, the possibilities with $N > 1$ are still fairly plausible, since it’s possible that a very small substructure exists, and it’s also possible that two substructures near each other could mimic the effect of one. The degree to which these possibilities are plausible is related to the choice of prior for the blob amplitudes and positions.

The estimated marginal likelihood of our model (averaged over all parameters including $N_{\text{lens}}$ and $N_{\text{arc}}$) is $\ln[p(D)] \approx -14141.4$, and the information (Kullback-Leibler divergence from the prior to the posterior) is $H \approx 99.4$ nats. The information represents the degree of compression of the posterior distribution with respect to the prior, and can be interpreted quite literally as how much was learned about the parameters from the data. It is also straightforward to estimate from Nested Sampling (Skilling 2006). Its definition is:

$$H = \int p(\theta|D) \ln \left[ \frac{p(\theta|D)}{p(\theta)} \right] d\theta$$

and we can build intuition about its meaning based on some simple examples. One such example is a uniform prior over a volume $V_0$ and a posterior which is uniform over a smaller volume $V_1$ contained within $V_0$. In this case $H = \ln(V_0/V_1)$ nats. Therefore, a value of $H = 100$ nats implies the posterior distribution occupies roughly $e^{−100}$ of the prior volume.

For the sampled parameter values representing the posterior distribution, there was no structure in the residuals (not shown), when normalised by the noise standard deviation in each pixel. This is unsurprising since the model assumptions are entirely correct for this dataset.

6 “HARDER” SIMULATED DATA

To further test the algorithm, we created a “harder” simulated image, where the lens consisted of an SIE$+\gamma$ profile plus 10 additional substructures. The image is shown in Figure 5. With the easy dataset, there was little hope of measuring the substructure mass function parameter $\mu_{\text{lens}}$, since there was only a single substructure which would provide little information about $\mu_{\text{lens}}$ (only constraining its general order of magnitude), even if its mass was measured perfectly.

As with the ‘easy’ dataset, we generated 5,000 samples from the DNS target distribution and thinned by a factor of $10^5$, so $5 \times 10^8$ MCMC iterations were actually performed, taking approximately 60 hours. The slower runtime in this case was because $N_{\text{lens}} = 10$, more CPU time was spent exploring parts of the hypothesis space.
Substructure Positions

Figure 5. The ‘easy’ simulated data, with substructure positions overlaid (a Monte Carlo approximation to the posterior expectation of the empirical measure). The density of black points in any region is proportional to the expected number of substructures whose centers lie within that region. In this case, there is strong evidence for a substructure close to the top-left image (where one was actually placed).

Simulated Dataset

Figure 6. The ‘harder’ simulated data, consisting of a more complex source profile, and a lens with an SIE+γ (whose centre is indicated by a white circle) and ten substructures. Only five of the substructures (star symbols) occurred within the square image boundary, but the other five still have an effect on the image.

where \( N_{\text{lens}} \) is high. The run resulted in 557 equally-weighted posterior samples. The posterior distribution for the SIE mass and the total substructure mass is given in Figure 7. The samples can be viewed as a movie at www.youtube.com/watch?v=o3ppf5k248.

To demonstrate the claim that we can infer something about the mass function of substructures directly from the image data, we have plotted the posterior distribution for \( \mu_{\text{lens}} \), the hyperparameter for the substructure masses, in Figure 8. The true value was 1, and the posterior distribution indicates a fairly wide uncertainty range that is at least consistent with the true value in some sense. Given that the image only contained a few substructures whose masses could be measured with any accuracy, the large uncertainty is not surprising.

The estimated marginal likelihood of our model, for the ‘harder’ simulated data, is \( \ln p(D) \approx -5671.9 \), and the information (Kullback-Leibler divergence from the prior to the posterior) is \( H \approx 155.7 \) nats. As with the easy dataset, the standardised residuals of the sampled models resembled noise.

7 THE COSMIC HORSESHOE

As a further demonstration the method, we apply it to the g-band data of the Cosmic Horseshoe J1004+4112 (Belokurov et al. 2007; Dye et al. 2008) taken with the Isaac Newton Telescope (INT). The image is shown in Figure 11. For this system, more data is available (i and U band data, as well as more recent Hubble Space Telescope (HST) imaging), although the g-band image is the highest signal-to-noise of
Figure 9. Same as Figure 4 but for the ‘harder’ simulated dataset. The true number of substructures was 10, which also happens to be the posterior mode. Only five substructures were located within the domain of the image, but \( N_{\text{lens}} = 10 \) is probable because the spread-out positions of the substructures imply that \( R_{\text{lens}} \) is probably large.

Figure 10. Same as Figure 5 but for the ‘harder’ simulated dataset. For all of the substructures located close to the ring, the positions were well constrained. There was weak evidence for some substructures that did not in fact exist.

Figure 11. The g-band INT image of the Cosmic Horseshoe, with the lens galaxy subtracted.

As with the simulated data (Figure 3), we see an expected negative correlation between these two quantities. However, the points are not as smoothly distributed in this case (we discuss this issue further in Section 7.1). An upper “limit” on the SIE mass, with 95\% posterior probability, is \( 5.20 \times 10^{12} \) solar masses. The algorithm has also found some possibilities where the substructure mass is much greater than this. In these cases, the substructures are far from the image — it is the environment that is being modelled.

The posterior distribution for \( N_{\text{lens}} \) (Figure 13) also shows some evidence for more than zero substructures. In particular, the prior probability for \( N_{\text{lens}} > 0 \) was \( 10/11 \approx 0.91 \), whereas the posterior probability is approximately 0.997. This corresponds to a Bayes Factor of about 300 in favour of \( N_{\text{lens}} > 0 \) versus the alternative \( N_{\text{lens}} = 0 \).

Despite weak evidence for the existence of substructure, when we examine the expected value of the empirical measure of substructure positions (Figure 14) we find no consistency in their positions, unlike for the simulated data (Figure 5). This situation is not uncommon. For example, Brewer & Donovan (2015) found evidence for a large number of Keplerian signals in a time series, but the number of such signals with well constrained properties was much lower. Related to this, we can compute posterior probabilities for any hypothesis about the substructure masses. With 95\% probability the substructure mass is less than \( 1.53 \times 10^{13} \) solar masses and with 75\% probability it is less than \( 5.10 \times 10^{12} \) solar masses. As the Einstein ring itself implies a mass of about \( 5 \times 10^{12} \) solar masses, these summaries are affected by the possibility of blobs outside the main Einstein ring.

As with any inference, the results presented here may be sensitive to many of the input modelling assumptions, and a slightly different (yet still reasonable) set of choices might yield different results. For example, if the density profile of the lens was smooth but not of the SIE form, and the data were informative enough to show this, the current model would only be able to explain the data by adding substructures. Hence, an alternative explanation for these
Figure 12. Same as Figure 3 but for the Cosmic Horseshoe. The joint posterior distribution for the SIE mass (integrated within its critical ellipse, which is not the critical curve of the lens overall), and the total mass in substructures. The units are defined by the critical density, so that a mass of $\pi$ units would have an Einstein radius of one arcsecond. To calculate the masses in solar masses, we assumed a flat cosmology with $\Omega_m = 0.3$, $\Omega_\Lambda = 0.7$, and $H_0 = 70$ km/s/Mpc.

Figure 13. Same as Figure 4 but for the Cosmic Horseshoe. The posterior distribution for the number of lens substructures in the Cosmic Horseshoe system. There is moderate evidence in favour of the hypothesis that $N_{\text{lens}} \neq 0$.

results is that, rather than containing a substructure, the density profile of the lens is simply not within the SIE+\(\gamma\) family. In fact, some of the posterior samples contain massive substructures outside of the image, which could be modelling higher-order effects of the environment beyond what is captured by the simple external shear model. This is one way of violating the SIE+\(\gamma\) assumption, and another is simply to have a different projected density profile. One way of further investigating this is to use a different family of smooth lens models and doing model selection based on the marginal likelihoods. Another option which we defer to future work is to implement a more flexible model (such as a mixture of concentric elliptical lenses). This result is consistent with that of Dye et al. (2008), who found a slight preference for an elliptical power law profile over the SIE (which is a specific case of an elliptical power law).

Another potential inadequacy of our model is the assumption that the PSF is known. In practice, the PSF is often estimated from the image of nearby star(s), or from theoretical knowledge of the telescope (especially in the case of space based imaging). However, if the PSF is misspecified, or in fact varies across the image, this could induce subtle effects in the imaging which our current model could only explain using substructure.

The estimated marginal likelihood of our model is $\ln \left[p(D)\right] \approx -6948.5$, and the information (Kullback-Leibler divergence from the prior to the posterior) is $H \approx 123.1$ nats. Three example models (lens and source) sampled from the posterior are shown in Figure 15. The model was able to fit the data down to the noise level.

7.1 Reproducibility of the results

The “effective sample size” returned by DNS, which we have described as the number of posterior samples, takes into account the fact DNS’s target distribution is not the posterior. However, it does not take autocorrelation into account, and thus can present an optimistic picture of the accuracy of any Monte Carlo approximations to posterior quantities. Most standard diagnostic techniques used in MCMC can be applied here. The simplest of these is a check of reproducibility. If different runs yield substantially different results, the MCMC output should be treated with caution. For example, in Figure 12, there is a correlation between the mass attributed to the SIE component and that attributed to substructures. However, the distribution also appears somewhat “lumpy” or multimodal. This may not be a feature of the actual posterior distribution, but could arise due to
imperfect sampling. Whereas a standard Metropolis sampler would move around very slowly in the hypothesis space, DNS naturally spends a non-negligible fraction of the time sampling the prior. Therefore, a particle exploring the parameter space can “forget” its good-fitting position, move somewhere completely different, and find another good-fitting model in a different location. This is a natural feature of the algorithm (and is also present in related algorithms such as parallel tempering). Despite this, the patchy nature of Figure 12 suggests that posterior exploration is still challenging in this problem.

The results for the simulated data (Figure 3) were less complex because of the definite existence of one substructure. Its mass and position provide some information about the hyperparameters \( \alpha_{\text{lens}} \), restricting the probability that high mass substructures exist far from the image.

8 CONCLUSIONS

We have developed a trans-dimensional Bayesian approach motivated directly by the question of whether dark substructures exist in a lens galaxy, given image data. By making use of the Diffusive Nested Sampling algorithm (Brewer, Pártay & Csányi 2011) and the RJObject library (Brewer 2014), we outsource the difficulties associated with choosing Metropolis proposals for a hierarchical model of non-fixed dimension. The model allows for source and lens “blobs” to appear as needed to explain the data. The prior for the blobs’ properties is specified hierarchically, to more realistically model sensible prior beliefs, and to tie the model parameters directly to questions of scientific interest such as the mass function of substructures.

As a proof of concept, we demonstrated the successful recovery of a single substructure from simulated data for which all of the model assumptions were true. We then applied the method to an image of the Cosmic Horseshoe system and found moderate evidence in favour of the existence of a substructure, or at the very least, a departure from a simple SIE+\( \gamma \) lens profile. The main output of our method is a set of posterior samples, each representing a plausible scenario for the lens and the source given the data and the assumed prior information. These samples can be displayed as a movie, which is a very useful method for intuitively un-
derstanding the remaining uncertainty. Any posterior summaries of interest can be produced from the samples, but the interpretation of many of these summaries is not necessarily straightforward. We have suggested that the posterior expectation of the empirical measure of substructure positions is one of the most helpful summaries.

The model assumptions used in this paper are fairly simple. In future work we intend to generalize the model to multi-band data, and extend the smooth lens model beyond the overly simplistic SIE+γ assumption. Applications to other systems are also forthcoming, as well as variants on the model using different conditional priors for the substructure properties given the hyperparameters.

ACKNOWLEDGEMENTS

It is a pleasure to thank Phil Marshall (Stanford), Tommaso Treu (UCLA), Ross Fadely (NYU), Alan Heavens (Edinburgh), and the referee for valuable discussion. Thomas Lumley (Auckland) also deserves credit for ending BJB’s usage of the jet colormap. This work was funded by a Marsden Fast Start grant from the Royal Society of New Zealand.

REFERENCES

Skilling, J., 2006, “Nested Sampling for General Bayesian Computation”, Bayesian Analysis 4, pp. 833-860